toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fu, Z.; Gerken, T.; Bromley, G.; Araújo, A.; Bonal, D.; Burban, B.; Ficklin, D.; Fuentes, J.D.; Goulden, M.; Hirano, T.; Kosugi, Y.; Liddell, M.; Nicolini, G.; Niu, S.; Roupsard, O.; Stefani, P.; Mi, C.; Tofte, Z.; Xiao, J.; Valentini, R.; Wolf, S.; Stoy, P.C. url  doi
openurl 
  Title The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology Type Journal Article
  Year 2018 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meterol.  
  Volume 263 Issue Pages 292-307  
  Keywords (down) Climate variability; Ecosystem respiration; Eddy covariance; Gross primary productivity; Net ecosystem carbon dioxide exchange; Tropical rainforest; acclimation; air temperature; anthropogenic effect; atmosphere-biosphere interaction; biodiversity; carbon flux; climate change; Cmip; eddy covariance; environmental change; flux measurement; methodology; net ecosystem exchange; net ecosystem production; radiative forcing; rainforest; sensitivity analysis; tropical environment  
  Abstract Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m−2 y-1) have the lowest net carbon uptake – or even carbon losses – versus other study ecosystems because RE is of a similar magnitude. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 μmol CO2 m−2 s-1 hPa-1. Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m−2 of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests. © 2018 Elsevier B.V.  
  Address Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01681923 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2018; Coden: Afmee; Correspondence Address: Stoy, P.C.; Department of Land Resources and Environmental Sciences, Montana State UniversityUnited States; email: paul.stoy@montana.edu; Funding details: ANR-10-LABX-25-01; Funding details: U.S. Department of Energy, DOE, SC0011097; Funding details: Agence Nationale de la Recherche, ANR; Funding details: 1702029; Funding details: 1552976; Funding details: Graduate School, Ohio State University; Funding details: National Natural Science Foundation of China, NSFC, 31625006; Funding text 1: PCS and JDF acknowledges funding support from the U.S. Department of Energy as part of the GoAmazon project (Grant SC0011097 ). PCS additionally acknowledges the U.S. National Science Foundation grants 1552976 and 1702029 , and The Graduate School at Montana State University . ZF is supported by the China Scholarship Council and National Natural Science Foundation of China ( 31625006 ). This work used eddy covariance data acquired and shared by the FLUXNET community, including the AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, LBA, and TERN- OzFlux networks. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices. The Guyaflux program belongs to the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi and the French national research infrastructure ANAEE-F. The Guyaflux program also received support from the “Observatoire du Carbone en Guyane” and an “investissement d'avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Funding for the site PA-SPn was provided by the North-South Centre of ETH Zurich. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling for the CMIP and thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Angela Tang and Taylor Rodenburg provided valuable comments to earlier drafts of this manuscript. We thank Dr. Tim Hill and two anonymous reviewers for their constructive comments on the manuscript.; References: Acevedo, O.C., Moraes, O.L.L., Degrazia, G.A., Fitzjarrald, D.R., Manzi, A.O., Campos, J.G., Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? (2009) Agric. For. Meteorol., 149, pp. 1-10; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol., 253-254, pp. 114-123; Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Jain, A.K., The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink (2015) Science, 348 (80), pp. 895-899; Aiba, S.I., Kitayama, K., Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu (1999) Borneo. Plant Ecol., 140, pp. 139-157; Andreae, M.O., Artaxo, P., Brandão, C., Carswell, F.E., Ciccioli, P., da Costa, A.L., Culf, A.D., Waterloo, M.J., Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments (2002) J. Geophys. Res., 107, p. 8066; Andreae, M.O., Acevedo, O.C., Araùjo, A., Artaxo, P., Barbosa, C.G.G., Barbosa, H.M.J., Brito, J., Yáñez-Serrano, A.M., The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols (2015) Atmos. Chem. Phys., 15, pp. 10723-10776; Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., Von Randow, C., Kabat, P., Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site (2002) J. Geophys. Res., 107, p. 8090; Asner, G.P., Anderson, C.B., Martin, R.E., Tupayachi, R., Knapp, D.E., Sinca, F., Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy (2015) Nat. Geosci., 8, pp. 567-573; Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., Vaughn, N.R., Llactayo, W., Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation (2017) Science, 355 (80), pp. 385-389; Avissar, R., Werth, D., Global hydroclimatological teleconnections resulting from tropical deforestation (2005) J. Hydrometeorol., 6, pp. 134-145; Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss (2017) Science, 358 (80), pp. 230-234; Belelli Marchesini, L., Bombelli, A., Chiti, T., Consalvo, C., Forgione, A., Grieco, E., Mazzenga, F., Valentini, R., Ankasa flux tower: a new research facility for the study of the carbon cycle in a primary tropical forest in Africa (2008) Proceedings of the Open Science Conference on Africa and Carbon Cycle: The CarboAfrica Project; Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Wardlaw, T., An introduction to the Australian and New Zealand flux tower network – OzFlux (2016) Biogeosciences, 13, pp. 5895-5916; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y.J.Y., Burban, B.T., Gross, P., Bonnefond, J.M.J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol., 14, pp. 1917-1933; Borma, L.S., da Rocha, H.R., Cabral, O.M., von Randow, C., Collicchio, E., Kurzatkowski, D., Brugger, P.J., Artaxo, P., Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia (2009) J. Geophys. Res. Biogeosci., 114; Bradford, M.G., Metcalfe, D.J., Ford, A., Liddell, M.J., McKeown, A., Floristics, stand structure and aboveground biomass of a 25-ha rainforest plot in the Wet Tropics of Australia (2014) J. Trop. For. Sci., pp. 543-553; Braga, N., da, S., Vitória, A.P., Souza, G.M., Barros, C.F., Freitas, L., Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees (2016) Biotropica, 48, pp. 453-464; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Grace, J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos., p. 107; Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., dos Santos, J., Araújo, A.C., Trumbore, S.E., Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency (2004) Ecol. Appl., 14, pp. 72-88; Chambers, J., Davies, S., Koven, C., Kueppers, L., Leung, R., McDowell, N., Norby, R., Rogers, A., Next Generation Ecosystem Experiment (NGEE) Tropics. US DOE NGEE Trop. white paper. (2014); Chiti, T., Certini, G., Grieco, E., Valentini, R., The role of soil in storing carbon in tropical rainforests: the case of Ankasa Park, Ghana (2010) Plant Soil, 331, pp. 453-461; Cleveland, C.C., Wieder, W.R., Reed, S.C., Townsend, A.R., Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere (2010) Ecology, 91, pp. 2313-2323; Cleveland, C.C., Townsend, A.R., Taylor, P., Alvarez-Clare, S., Bustamante, M.M.C., Chuyong, G., Dobrowski, S.Z., Wieder, W.R., Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis (2011) Ecol. Lett.; Cusack, D.F., Chou, W.W., Yang, W.H., Harmon, M.E., Silver, W.L., Controls on long-term root and leaf litter decomposition in neotropical forests (2009) Glob. Chang. Biol., 15, pp. 1339-1355; da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Maia, J.F., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil (2009) J. Geophys. Res. Biogeosci., 114. , G00B12; Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A., Age, extent and carbon storage of the central Congo Basin peatland complex (2017) Nature, 542, pp. 86-89; de Araújo, A.C., Dolman, A.J., Waterloo, M.J., Gash, J.H.C., Kruijt, B., Zanchi, F.B., de Lange, J.M.E., Backer, J., The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia (2010) Agric. For. Meteorol., 150, pp. 226-237; Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J., Carbon pools and flux of global forest ecosystems (1994) Science, 263 (80), pp. 185-190; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ., 29, pp. 151-165; Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Snyder, P.K., Global consequences of land use (2005) Science, 309, pp. 570-574; Fu, Z., Dong, J., Zhou, Y., Stoy, P.C., Niu, S., Long term trend and interannual variability of land carbon uptake—the attribution and processes (2017) Environ. Res. Lett., 12, p. 14018; Fuentes, J.D., Chamecki, M., dos Santos, R.M.N., Von Randow, C., Stoy, P.C., Katul, G., Fitzjarrald, D., Yañez-Serrano, A.M., Linking meteorology, turbulence, and air chemistry in the amazon rain forest (2016) Bull. Am. Meteorol. Soc., 97, pp. 2329-2342; Gerken, T., Chamecki, M., Fuentes, J.D., Air-parcel residence times within forest canopies (2017) Boundary-Layer Meteorol., 165, pp. 29-54; Giardina, F., Konings, A.G., Kennedy, D., Alemohammad, S.H., Oliveira, R.S., Uriarte, M., Gentine, P., Tall Amazonian forests are less sensitive to precipitation variability (2018) Nat. Geosci., 11, pp. 405-409; Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Sodhi, N.S., Primary forests are irreplaceable for sustaining tropical biodiversity (2011) Nature, 478, pp. 378-381; Goulden, M.L., Miller, S.D., Da Rocha, H.R., Nocturnal cold air drainage and pooling in a tropical forest (2006) J. Geophys. Res. Atmos., p. 111; Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Gash, J., Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia (1995) Glob. Chang. Biol., 1, pp. 1-12; Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest (1996) Glob. Chang. Biol., 2, pp. 209-217; Grace, J., Nagy, L., Forsberg, B.R., Artaxo, P., The Amazon carbon balance: an evaluation of methods and results (2016) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin., pp. 79-100. , Springer Berlin Heidelberg; Hall, C.A.S., Tian, H., Qi, Y., Pontius, G., Cornell, J., Modelling spatial and temporal patterns of tropical land use change (1995) J. Biogeogr., 22, pp. 753-757; Hayek, M.N., Wehr, R., Longo, M., Hutyra, L.R., Wiedemann, K., Munger, J.W., Bonal, D., Wofsy, S.C., A novel correction for biases in forest eddy covariance carbon balance (2018) Agric. For. Meteorol., 250-251, pp. 90-101; Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., Osaki, M., Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia (2007) Glob. Chang. Biol., 13, pp. 412-425; Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H., Controls on the carbon balance of tropical peatlands (2008) Ecosystems, 12, pp. 873-887; Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., Osaki, M., Effects of disturbances on the carbon balance of tropical peat swamp forests (2012) Glob. Change Biol., 18, pp. 3410-3422; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Myneni, R., Amazon rainforests green‐up with sunlight in dry season (2006) Geophys. Res. Lett., 33. , L06405; Huete, A.R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S.R., Ichii, K., Panuthai, S., Gamo, M., Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia (2008) Agric. For. Meteorol., 148, pp. 748-760; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci., 112; Hutyra, L.R., Munger, J.W., Hammond-Pyle, E., Saleska, S.R., Restrepo-Coupe, N., Daube, B.C., de Camargo, P.B., Wofsy, S.C., Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome (2008) Agric. For. Meteorol., 148, pp. 1266-1279; Inoue, Y., Ichie, T., Kenzo, T., Yoneyama, A., Kumagai, T., Nakashizuka, T., Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canpopy trees of Dryobalanops aromatica (Sipterocarpaceae) in a Malaysian tropical rain forest (2016) J. Trop. Pediatr., pp. 1-11; Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., Marshall, J., Peichl, M., Apparent winter CO2 uptake by a boreal forest due to decoupling (2017) Agric. For. Meteorol., 232, pp. 23-34; Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Melling, L., CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia (2018) Agric. For. Meteorol., 248, pp. 494-501; Kim, D.-H., Sexton, J.O., Townshend, J.R., Accelerated deforestation in the humid tropics from the 1990s to the 2000s (2015) Geophys. Res. Lett., 42, pp. 3495-3501; Klein, T., The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours (2014) Funct. Ecol., 28, pp. 1313-1320; Konings, A.G., Gentine, P., Global variations in ecosystem‐scale isohydricity (2016) Glob. Change Biol.; Körner, C., Leaf diffusive conductances in the major vegetation types of the globe (1995) Ecophysiology of Photosynthesis, pp. 463-490. , Springer; Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., Nik, A.R., CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia (2008) Agric. For. Meteorol., 148, pp. 439-452; Kosugi, Y., Takanashi, S., Tani, M., Ohkubo, S., Matsuo, N., Itoh, M., Noguchi, S., Nik, A.R., Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia (2012) J. For. Res., 17, pp. 227-240; Kruijt, B., Elbers, J.A., Von Randow, C., Araujo, A.C., Oliveira, P.J., Culf, A., Manzi, A.O., Moors, E.J., The robustness of eddy correlation fluxes for Amazon rain forest conditions (2004) Ecol. Appl., 14, pp. 101-113; Kumagai, T., Porporato, A., Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? (2012) Plant Cell Environ., 35, pp. 61-71; Kutsch, W.L., Herbst, M., Vanselow, R., Hummelshøj, P., Jensen, N.O., Kappen, L., Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany (2001) Basic Appl. Ecol., 2, pp. 265-281; Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A.G., Stoy, P.C., Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation (2010) Glob. Chang. Biol., 16, pp. 187-208; Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., Moorcroft, P.R., Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change (2016) Proc. Natl. Acad. Sci., 113, pp. 793-797; Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden, G.M.F., Nepstad, D., The 2010 amazon drought (2011) Science, 331 (80), p. 554; Loescher, H.W., Oberbauer, S.F., Gholz, H.L., Clark, D.B., Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest (2003) Glob. Chang. Biol., 9, p. 396; Lopes, A.P., Nelson, B.W., Wu, J., Graça, P.M.L., de, A., Tavares, J.V., Prohaska, N., Saleska, S.R., Leaf flush drives dry season green-up of the Central Amazon (2016) Remote Sens. Environ., 182, pp. 90-98; Malhi, Y., Nobre, A.D., Grace, J., Kruijt, B., Pereira, M.G.P., Culf, A., Scott, S., Carbon dioxide transfer over a Central Amazonian rain forest (1998) J. Geophys. Res., 103, pp. 31593-31612; Marchin, R.M., Broadhead, A.A., Bostic, L.E., Dunn, R.R., Hoffmann, W.A., Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming (2016) Plant Cell Environ., 39, pp. 2221-2234; Martens, C.S., Shay, T.J., Mendlovitz, H.P., Matross, D.M., Saleska, S.R., Wofsy, S.C., Stephen Woodward, W., Crill, P.M., Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night‐time CO2 net ecosystem exchange derived from radon and eddy covariance methods (2004) Glob. Chang. Biol., 10, pp. 618-629; Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., Mencuccini, M., A new look at water transport regulation in plants (2014) New Phytol., 204, pp. 105-115; Matheny, A.M., Mirfenderesgi, G., Bohrer, G., Trait-based representation of hydrological functional properties of plants in weather and ecosystem models (2017) Plant Divers., 39, pp. 1-12; Meir, P., Grace, J., Miranda, A.C., Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature (2001) Funct. Ecol., 15, pp. 378-387; Miller, S.D., Goulden, M.L., Menton, M.C., da Rocha, H.R., de Freitas, H.C., Silva, E., Figueira, A.M., de Sousa, C.A.D., Biometric and micrometeorological measurements of tropical forest carbon balance (2004) Ecol. Appl., 14, pp. 114-126; Mitchard, E.T.A., The tropical forest carbon cycle and climate change (2018) Nature, 559, pp. 527-534; Navarro, M.N.V., Jourdan, C., Sileye, T., Braconnier, S., Mialet-Serra, I., Saint-Andre, L., Dauzat, J., Roupsard, O., Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation (2008) Tree Physiol., 28, pp. 1661-1674; Nepstad, D.C., Moutinho, P., Dias‐Filho, M.B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res., 107. , 8085; Norby, R.J., De Kauwe, M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., Lapola, D.M., Zaehle, S., Model – data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments (2015) New Phytol., pp. 17-28; Novick, K., Oren, R., Stoy, P.C., Juang, J.Y., Siqueira, M., Katul, G., The relationship between reference canopy conductance and simplified hydraulic architecture (2009) Adv. Water Resour., 32, pp. 809-819; Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Phillips, R.P., The increasing importance of atmospheric demand for ecosystem water and carbon fluxes (2016) Nat. Clim. Change, 6, pp. 1023-1027; Oberbauer, S.F., Loescher, H.W., Clark, D.B., Effects of climate factors on daytime carbon exchange from an old growth forest in Costa rica (2000) Selbyana, pp. 66-73; Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit (1999) Plant Cell Environ., 22, pp. 1515-1526; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333 (80). , 988 LP-993; Paoli, G.D., Curran, L.M., Slik, J.W.F., Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo (2008) Oecologia, 155, pp. 287-299; Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Yakir, D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation (2006) Biogeosciences, 3, pp. 571-583; Pau, S., Detto, M., Kim, Y., Still, C.J., Tropical forest temperature thresholds for gross primary productivity (2018) Ecosphere, 9; Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs (2013) Biogeosciences, 10, pp. 4137-4177; Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Núñez, P.V., Vásquez, R.M., Laurance, S.G., Grace, J., Changes in the carbon balance of tropical forests: Evidence from long-term plots (1998) Science, 282 (80). , 439 LP-442; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon Rainforest (2009) Science, 323 (80), pp. 1344-1347; Powell, T.L., Wheeler, J.K., de Oliveira, A.A.R., da Costa, A.C.L., Saleska, S.R., Meir, P., Moorcroft, P.R., Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees (2017) Glob. Change Biol.; Raich, J.W., Russell, A.E., Vitousek, P.M., Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i (1997) Ecology, 78, pp. 707-721; Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Valentini, R., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm (2005) Glob. Change Biol., 11, pp. 1424-1439; Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol.; Rice, W.R., Analyzing tables of statistical tests (1989) Evolution (N. Y.), 43, pp. 223-225; Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecol. Appl., 19, pp. 1417-1428; Roderick, M.L., Farquhar, G.D., The cause of decreased Pan evaporation over the past 50 years (2002) Science, 298 (80), pp. 1410-1411; Roupsard, O., Bonnefond, J.-M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Bouillet, J.-P., Partitioning energy and evapo-transpiration above and below a tropical palm canopy (2006) Agric. For. Meteorol., 139, pp. 252-268; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M., Wofsy, S., da Rocha, H.R., de Camargo, P.B., Silva, H., Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses (2003) Science, 302 (80), pp. 1554-1557; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (80), p. 612; Saleska, S., Da Rocha, H., Kruijt, B., Nobre, A., Ecosystem carbon fluxes and Amazonian forest metabolism (2009) Amazonia Glob. Change, pp. 389-407; Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N., Dry-season greening of Amazon forests (2016) Nature, 531, pp. E4-E5; Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Farfan, F., The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests (2011) New Phytol., 189, pp. 967-977; Santana, R.A., Dias-Júnior, C.Q., da Silva, J.T., Fuentes, J.D., do Vale, R.S., Alves, E.G., dos Santos, R.M.N., Manzi, A.O., Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy (2018) Agric. For. Meteorol., 260-261, pp. 41-54; Santos, D.M., Acevedo, O.C., Chamecki, M., Fuentes, J.D., Gerken, T., Stoy, P.C., Temporal scales of the nocturnal flow within and above a forest canopy in Amazonia (2016) Boundary-Layer Meteorol., pp. 1-26; Siddiq, Z., Chen, Y.-J., Zhang, Y.-J., Zhang, J.-L., Cao, K.-F., More sensitive response of crown conductance to VPD and larger water consumption in tropical evergreen than in deciduous broadleaf timber trees (2017) Agric. For. Meteorol., 247, pp. 399-407; Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., Novick, K.A., High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (2016) Geophys. Res. Lett., 43, pp. 9686-9695; Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 10019-10024; Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc.; Taylor, P.G., Cleveland, C.C., Wieder, W.R., Sullivan, B.W., Doughty, C.E., Dobrowski, S.Z., Townsend, A.R., Temperature and rainfall interact to control carbon cycling in tropical forests (2017) Ecol. Lett., 20, pp. 779-788; Thomas, C.K., Martin, J.G., Law, B.E., Davis, K., Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon (2013) Agric. For. Meteorol., 173, pp. 14-27; Tóta, J., Fitzjarrald, D.R., da Silva Dias, M.A.F., Amazon rainforest exchange of carbon and subcanopy air flow: manaus LBA Site—a complex terrain condition (2012) Transfus. Apher. Sci., , 165067; Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Goetz, S.J., Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012 (2015) Environ. Res. Lett., 10, p. 74002; van Marle, M.J.E., Field, R.D., van der Werf, G.R., Estrada de Wagt, I.A., Houghton, R.A., Rizzo, L.V., Artaxo, P., Tsigaridis, K., Fire and deforestation dynamics in Amazonia (1973-2014) (2017) Glob. Biogeochem. Cycles, 31, pp. 24-38; Wieder, W.R., Cleveland, C.C., Townsend, A.R., Controls over leaf litter decomposition in wet tropical forests (2009) Ecology, 90, pp. 3333-3341; Wolf, S., Eugster, W., Majorek, S., Buchmann, N., Afforestation of tropical pasture only marginally affects ecosystem-scale evapotranspiration (2011) Ecosystems, 14, pp. 1264-1275; Wolf, S., Eugster, W., Potvin, C., Buchmann, N., Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama (2011) Agric. For. Meteorol., 151, pp. 1139-1151; Wolf, S., Eugster, W., Potvin, C., Turner, B.L., Buchmann, N., Carbon sequestration potential of tropical pasture compared with afforestation in Panama (2011) Glob. Change Biol., 17, pp. 2763-2780; Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs (2004) Clim. Change, 62, pp. 189-216; Wu, J., Guan, K., Hayek, M., Restrepo-Coupe, N., Wiedemann, K.T., Xu, X., Wehr, R., Saleska, S.R., Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales (2017) Glob. Change Biol., 23, pp. 1240-1257; Xiao, J., Liu, S., Stoy, P.C., Preface: impacts of extreme climate events and disturbances on carbon dynamics (2016) Biogeosciences, 13, pp. 3665-3675 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 831  
Permanent link to this record
 

 
Author Zalamea, P.C.; Munoz, F.; Stevenson, P.R.; Paine, C.E.T.; Sarmiento, C.; Sabatier, D.; Heuret, P. openurl 
  Title Continental-scale patterns of Cecropia reproductive phenology: evidence from herbarium specimens Type Journal Article
  Year 2011 Publication Proceedings Of The Royal Society B-Biological Sciences Abbreviated Journal Proc. R. Soc. B-Biol. Sci.  
  Volume 278 Issue 1717 Pages 2437-2445  
  Keywords (down) climate seasonality; reproductive patterns; Fourier spectral and cospectral analyses; herbarium collections; Neotropics; pioneer plants  
  Abstract Plant phenology is concerned with the timing of recurring biological events. Though phenology has traditionally been studied using intensive surveys of a local flora, results from such surveys are difficult to generalize to broader spatial scales. In this study, contrastingly, we assembled a continental-scale dataset of herbarium specimens for the emblematic genus of Neotropical pioneer trees, Cecropia, and applied Fourier spectral and cospectral analyses to investigate the reproductive phenology of 35 species. We detected significant annual, sub-annual and continuous patterns, and discuss the variation in patterns within and among climatic regions. Although previous studies have suggested that pioneer species generally produce flowers continually throughout the year, we found that at least one third of Cecropia species are characterized by clear annual flowering behaviour. We further investigated the relationships between phenology and climate seasonality, showing strong associations between phenology and seasonal variations in precipitation and temperature. We also verified our results against field survey data gathered from the literature. Our findings indicate that herbarium material is a reliable resource for use in the investigation of large-scale patterns in plant phenology, offering a promising complement to local intensive field studies.  
  Address [Zalamea, PC; Sabatier, D] IRD, UMR AMAP, F-34000 Montpellier, France, Email: camilozalamea@gmail.com  
  Corporate Author Thesis  
  Publisher Royal Soc Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292592000005 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 328  
Permanent link to this record
 

 
Author Fargeon, H.; Aubry-Kientz, M.; Brunaux, O.; Descroix, L.; Gaspard, R.; Guitet, S.; Rossi, V.; Herault, B. pdf  url
doi  openurl
  Title Vulnerability of commercial tree species to water stress in logged forests of the Guiana shield Type Journal Article
  Year 2016 Publication Forests Abbreviated Journal Forests  
  Volume 7 Issue 5 Pages  
  Keywords (down) Climate change; Growth rates; Mortality rates; Paracou; Selective logging  
  Abstract The future of tropical managed forests is threatened by climate change. In anticipation of the increase in the frequency of drought episodes predicted by climatic models for intertropical regions, it is essential to study commercial trees' resilience and vulnerability to water stress by identifying potential interaction effects between selective logging and stress due to a lack of water. Focusing on 14 species representing a potential or acknowledged commercial interest for wood production in the Guiana Shield, a joint model coupling growth and mortality for each species was parametrized, including a climatic variable related to water stress and the quantity of aboveground biomass lost after logging. For the vast majority of the species, water stress had a negative impact on growth rate, while the impact of logging was positive. The opposite results were observed for the mortality. Combining results from growth and mortality models, we generate vulnerability profiles and ranking from species apparently quite resistant to water stress (Chrysophyllum spp., Goupia glabra Aubl., Qualea rosea Aubl.), even under logging pressure, to highly vulnerable species (Sterculia spp.). In light of our results, forest managers in the Guiana Shield may want to conduct (i) a conservation strategy of the most vulnerable species and (ii) a diversification of the logged species. Conservation of the already-adapted species may also be considered as the most certain way to protect the tropical forests under future climates. © 2016 by the authors.  
  Address Université de Yaoundé I, UMMISCO (UMI 209), Yaoundé, Cameroon  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 11 June 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 682  
Permanent link to this record
 

 
Author Céréghino, R.; Françoise, L.; Bonhomme, C.; Carrias, J.-F.; Compin, A.; Corbara, B.; Jassey, V.; Leflaive, J.; Rota, T.; Farjalla, V.; Leroy, C. doi  openurl
  Title Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem Type Journal Article
  Year 2020 Publication Ecological Indicators Abbreviated Journal Ecol. Indic.  
  Volume 119 Issue 106839 Pages  
  Keywords (down) Climate change; Functional traits; Lt50; Macroinvertebrates; Rainforests; Biodiversity; Climate change; Driers (materials); Drought; Environmental management; Population statistics; Tanks (containers); Water; Aquatic invertebrates; Climate change adaptation; Controlled conditions; Environmental managers; Freshwater biodiversity; Freshwater invertebrates; Future climate scenarios; Laboratory conditions; Aquatic organisms; aquatic community; biodiversity; climate change; cuticle; desiccation; drought stress; invertebrate; Neotropical Region; population size; survival; French Guiana; Invertebrata  
  Abstract The intensification of dry seasons is a major threat to freshwater biodiversity in Neotropical regions. Little is known about resistance to drying stress and the underpinning traits in Neotropical freshwater species, so we don't know whether desiccation resistance allows to anticipate shifts in biological diversity under future climate scenarios. Here, we used the aquatic invertebrates that live in the rainwater-filled leaves of tank bromeliads, to examine the extent to which desiccation resistance of species measured in the laboratory predicts community response to drought intensification in nature. We measured desiccation resistance in 17 invertebrate species (>90% of the biomass usually found in bromeliads of French Guiana) by recording the median lethal time (LT50) of experimental populations exposed to controlled conditions of residual moisture. In the field, we placed rainshelters above tank bromeliads to emulate drought scenarios ranging from the ambient norm to IPCC scenarios and extreme events, and we recorded the response of functional community structure. LT50 ranged from 4.18 to 19.06 days, and was related to cuticle content and dry body mass. Among other functional indicators that represent strategies to optimize resource use under stressful conditions (e.g., habitat use, trophic specialization), LT50 was the best predictor of community structure responses along a gradient of emulated drought intensities. Therefore, species’ LT50s measured under laboratory conditions can be used to forecast aquatic community response to drying stress in nature. Anticipating how species will cope with drought has never been more important for environmental managers to support climate change adaptation. We show that desiccation resistance in freshwater invertebrates is a key indicator of potential population size and local–global range shifts, and this could be especially true in the Neotropics where species have narrow physiological tolerances for climatic variation. © 2020 Elsevier Ltd  
  Address ECOFOG, AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, 97379, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470160x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 941  
Permanent link to this record
 

 
Author Maréchaux, I.; Bartlett, M.K.; Sack, L.; Baraloto, C.; Engel, J.; Joetzjer, E.; Chave, J. url  openurl
  Title Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest Type Journal Article
  Year 2015 Publication Functional Ecology Abbreviated Journal Functional Ecology  
  Volume 29 Issue 10 Pages 1268-1277  
  Keywords (down) Climate change; French Guiana; Functional traits; Plant-water relations; Tropical trees; Wilting  
  Abstract Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (π<inf>tlp</inf>) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (π<inf>o</inf>) is tightly correlated with π<inf>tlp</inf>. Estimating π<inf>tlp</inf> from osmometer measurements of π<inf>o</inf> is much faster than the standard pressure-volume curve approach of π<inf>tlp</inf> determination. We used this technique to estimate π<inf>tlp</inf> for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, π<inf>tlp</inf> ranging from -1·4 to -3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf-level drought tolerance varied across species, in agreement with the available published observations of species variation in drought-induced mortality. On average, species with a more negative π<inf>tlp</inf> (i.e. with greater leaf-level drought tolerance) occurred less frequently across the region than drought-sensitive species. Across individuals, π<inf>tlp</inf> correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in π<inf>tlp</inf> among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between π<inf>tlp</inf> and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. © 2015 British Ecological Society.  
  Address CNRM-GAME – URA1357, 42 avenue G. Coriolis, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 12 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 629  
Permanent link to this record
 

 
Author Le Lann, C.; Roux, O.; Serain, N.; Van Alphen, J.J.M.; Vernon, P.; Van Baaren, J. openurl 
  Title Thermal tolerance of sympatric hymenopteran parasitoid species: does it match seasonal activity? Type Journal Article
  Year 2011 Publication Physiological Entomology Abbreviated Journal Physiol. Entomol.  
  Volume 36 Issue 1 Pages 21-28  
  Keywords (down) Climate change; critical thermal limits; CTmax; CTmin; dry mass; guild; hind tibia length; seasonal activities; surface to volume ratio  
  Abstract Climatic changes result in an increased in mean temperature and in a higher incidence of extreme weather events such as heat and cold waves. For ectotherms, such as insect parasitoids, the ability to remain active under extreme climatic conditions is a significant key to fitness. The body size of individuals, and in particular their surface to volume ratio, may play a role in their resistance to thermal conditions. The thermal tolerances are investigated of two closely-related sympatric parasitoid species [Aphidius avenae Haliday and Aphidius rhopalosiphi De Stefani-Perez (Hymenoptera: Aphidiinae)] that have a similar ecology but differ in body size and phenologies. The critical thermal limits of individuals are assessed in both sexes of each parasitoid species and the influence of surface volume ratios on their thermal tolerances. Aphidius avenae is less resistant to low temperatures and more resistant to high temperatures than A. rhopalosiphi. The lower surface to volume ratio of A. avenae individuals may help them to remain active in summer when experiencing heat waves. However, body size is not the sole factor that plays a role in differences of thermal tolerance between species and body size may not be an adaptation to extreme temperatures but rather a by-product of developmental regulation. Closely-related sympatric species from the same ecological guild can have different thermal tolerances that may allow them to occur within the same habitat. The present study also highlights the importance of clearly defining how to measure critical thermal limits to determine the thermal tolerance of a species.  
  Address [Le Lann, Cecile; Serain, Nelly; Van Alphen, Jacques J. M.; Vernon, Philippe; Van Baaren, Joan] Univ Rennes 1, UMR CNRS ECOBIO 6553, F-35042 Rennes, France, Email: cecile.lelann@univ-rennes1.fr  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6962 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287790900004 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 294  
Permanent link to this record
 

 
Author Lalague, H.; Csilléry, K.; Oddou-Muratorio, S.; Safrana, J.; de Quattro, C.; Fady, B.; González-Martínez, S.C.; Vendramin, G.G. url  openurl
  Title Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France Type Journal Article
  Year 2014 Publication Tree Genetics and Genomes Abbreviated Journal Tree Genetics and Genomes  
  Volume 10 Issue 1 Pages 15-26  
  Keywords (down) Climate adaptation; Effective population size; Forest tree; Genomic diversity; Minor allele frequency (MAF); Recombination rate; Single nucleotide polymorphism (SNP)  
  Abstract European beech (Fagus sylvatica L.) is one of the most economically and ecologically important deciduous trees in Europe, yet little is known about its genomic diversity and its adaptive potential. Here, we detail the discovery and analysis of 573 single nucleotide polymorphisms (SNPs) from 58 candidate gene fragments that are potentially involved in abiotic stress response and budburst phenology using a panel of 96 individuals from southeastern France. The mean nucleotide diversity was low (θ π = 2.2 × 10-3) but extremely variable among gene fragments (range from 0.02 to 10), with genes carrying insertion/deletion mutations exhibiting significantly higher diversity. The decay of linkage disequilibrium (LD) measured at gene fragments >800 base pairs was moderate (the half distance of r 2 was 154 bp), consistent with the low average population-scaled recombination rate (ρ = 5.4 × 10-3). Overall, the population-scaled recombination rate estimated in F. sylvatica was lower than for other angiosperm tree genera (such as Quercus or Populus) and similar to conifers. As a methodological perspective, we explored the effect of minimum allele frequency (MAF) on LD and showed that higher MAF resulted in slower decay of LD. It is thus essential that the same MAF is used when comparing the decay of LD among different studies and species. Our results suggest that genome-wide association mapping can be a potentially efficient approach in F. sylvatica, which has a relatively small genome size. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address Department of Forest Ecology and Genetics, National Institute for Agriculture and Food Research and Technology (INIA), Forest Research Centre (CIFOR), 28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 13 January 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 578  
Permanent link to this record
 

 
Author LaPierre, L.; Hespenheide, H.; Dejean, A. openurl 
  Title Wasps robbing food from ants: a frequent behavior? Type Journal Article
  Year 2007 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 94 Issue 12 Pages 997-1001  
  Keywords (down) cleptobiosis; social wasps; charterginus; polybioides; plant-ants  
  Abstract Food robbing, or cleptobiosis, has been well documented throughout the animal kingdom. For insects, intrafamilial food robbing is known among ants, but social wasps (Vespidae; Polistinae) taking food from ants has, to the best of our knowledge, never been reported. In this paper, we present two cases involving social wasps robbing food from ants associated with myrmecophytes. (1) Polybioides tabida F. (Ropalidiini) rob pieces of prey from Tetraponera aethiops Smith (Formicidae; Pseudomyrmecinae) specifically associated with Barteria fistulosa Mast. (Passifloraceae). (2) Charterginus spp. (Epiponini) rob food bodies from myrmecophytic Cecropia (Cecropiaceae) exploited by their Azteca mutualists (Formicidae; Dolichoderinae) or by opportunistic ants (that also attack cleptobiotic wasps). We note here that wasps gather food bodies (1) when ants are not yet active; (2) when ants are active, but avoiding any contact with them by flying off when attacked; and (3) through the coordinated efforts of two to five wasps, wherein one of them prevents the ants from leaving their nest, while the other wasps freely gather the food bodies. We suggest that these interactions are more common than previously thought.  
  Address CNRS Guyane, UPS2561, UMR5174, F-97300 Cayenne, France, Email: llapierre@lowercolumbia.edu  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000250980800006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 153  
Permanent link to this record
 

 
Author Vedel, V.; Scotti, I. openurl 
  Title Promoting the promoter Type Journal Article
  Year 2011 Publication Plant Science Abbreviated Journal Plant Sci.  
  Volume 180 Issue 2 Pages 182-189  
  Keywords (down) cis-Regulation; Evolutionary and developmental biology; Integrative evolution; Plant development; Population genetics; Transcription  
  Abstract Recent evolutionary studies clearly indicate that evolution is mainly driven by changes in the complex mechanisms of gene regulation and not solely by polymorphism in protein-encoding genes themselves. After a short description of the cis-regulatory mechanism, we intend in this review to argue that by applying newly available technologies and by merging research areas such as evolutionary and developmental biology, population genetics, ecology and molecular cell biology it is now possible to study evolution in an integrative way. We contend that, by analysing the effects of promoter sequence variation on phenotypic diversity in natural populations, we will soon be able to break the barrier between the study of extant genetic variability and the study of major developmental changes. This will lead to an integrative view of evolution at different scales. Because of their sessile nature and their continuous development, plants must permanently regulate their gene expression to react to their environment, and can, therefore, be considered as a remarkable model for these types of studies. (C) 2010 Elsevier Ireland Ltd. All rights reserved.  
  Address [Vedel, Vincent; Scotti, Ivan] INRA, UMR ECOFOG, Kourou 97387, French Guiana, Email: vincent.vedel@ecofog.gf  
  Corporate Author Thesis  
  Publisher ELSEVIER IRELAND LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9452 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286562200002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 291  
Permanent link to this record
 

 
Author Fontaine, S.; Stahl, C.; Klumpp, K.; Picon-Cochard, C.; Grise, M.M.; Dezécache, C.; Ponchant, L.; Freycon, V.; Blanc, L.; Bonal, D.; Burban, B.; Soussana, J.-F.; Blanfort, V.; Alvarez, G. doi  openurl
  Title Response to Editor to the comment by Schipper and Smith to our paper entitled 'Continuous soil carbon storage of old permanent pastures in Amazonia' Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Global Change Biology  
  Volume 24 Issue 3 Pages e732-e733  
  Keywords (down) chronosequence study; continuous C accumulation; deep soil C; eddy covariance; grassland  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 February 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Fontaine_etal2018 Serial 796  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: