toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Baruffol, M.; Bourland, N.; Bruelheide, H.; Daïnou, K.; de Gouvenain, R.C.; Doucet, J.-L.; Doust, S.; Fine, P.V.A.; Fortunel, C.; Haase, J.; Holl, K.D.; Jactel, H.; Li, X.; Kitajima, K.; Koricheva, J.; Martínez-Garza, C.; Messier, C.; Paquette, A.; Philipson, C.; Piotto, D.; Poorter, L.; Posada, J.M.; Potvin, C.; Rainio, K.; Russo, S.E.; Ruiz-Jaen, M.; Scherer-Lorenzen, M.; Webb, C.O.; Wright, S.J.; Zahawi, R.A.; Hector, A. url  openurl
  Title Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why Type Journal Article
  Year 2015 Publication Journal of Ecology Abbreviated Journal Journal of Ecology  
  Volume 103 Issue 4 Pages 978-989  
  Keywords (down) Functional ecology; FunDivEurope; Growth; Hierarchical models; Plant population and community dynamics; Relative growth rate; Size-standardized growth rate; TreeDivNet  
  Abstract Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society.  
  Address Department of Plant Sciences, University of Oxford, Oxford, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 July 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 609  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Sonnier, G.; Dreyer, E. openurl 
  Title Similar irradiance-elicited plasticity of leaf traits in saplings of 12 tropical rainforest tree species with highly different leaf mass to area ratio Type Journal Article
  Year 2010 Publication Functional Plant Biology Abbreviated Journal Funct. Plant Biol.  
  Volume 37 Issue 4 Pages 342-355  
  Keywords (down) functional diversity; light availability; photosynthetic nitrogen use efficiency; photosynthetic capacity; tropical rainforest  
  Abstract Leaf traits of tropical tree species display an important inter-specific diversity, as detected for instance in the large range of values of leaf mass : area ratio (LMA). They also demonstrate a large irradiance-elicited plasticity, but there is still debate whether this plasticity differs among species. To address this question, leaf traits were recorded on saplings from 12 rainforest tree species in French Guiana, grown under approximately 5, 10 and 20% relative irradiance. Fifteen structural and physiological leaf traits related to photosynthesis were measured. The irradiance-elicited plasticity was quantified using a relative distance plasticity index. A large inter-specific diversity was detected for all leaf traits. A principal component analysis opposed species with a large mass-based photosynthesis, respiration, N content and photosynthetic nitrogen use efficiency, to species with a large leaf mass : area ratio, LMA. The two pioneer species used in this study displayed the largest photosynthetic capacity (and lowest LMA) and ranked at one end of the species continuum. Relative irradiance affected almost all traits with the exception of mass-based photosynthesis. A weak interaction was found between species and relative irradiance and the species ranking was maintained among relative irradiance treatments for the majority of the traits. A principal component analysis of the values of relative-distance plasticity index failed to reveal any consistent patterns of traits or species. We concluded that irradiance-elicited plasticity of leaf traits was similar among species irrespective of LMA and successional status, despite the occurrence of a large inter-specific diversity for the investigated traits.  
  Address [Dreyer, Erwin] Nancy Univ, INRA, UMR Ecol & Ecophysiol Forestieres 1137, IFR Ecosyst Forestiers Agroressources Biomol & Al, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher CSIRO PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1445-4408 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275979100009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 63  
Permanent link to this record
 

 
Author Baraloto, C.; Paine, C.E.T.; Poorter, L.; Beauchene, J.; Bonal, D.; Domenach, A.M.; Herault, B.; Patino, S.; Roggy, J.C.; Chave, J. openurl 
  Title Decoupled leaf and stem economics in rain forest trees Type Journal Article
  Year 2010 Publication Ecology Letters Abbreviated Journal Ecol. Lett.  
  Volume 13 Issue 11 Pages 1338-1347  
  Keywords (down) Functional diversity; leaf economics; multiple factor analysis; plant strategies; plant traits; tropical forest; wood density  
  Abstract P>Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.  
  Address [Baraloto, Christopher; Bonal, Damien; Patino, Sandra; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1461-023X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283157500002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 26  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Imbert, P.; Born, C.; Bonal, D.; Dreyer, E. openurl 
  Title Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance Type Journal Article
  Year 2005 Publication Tree Physiology Abbreviated Journal Tree Physiol.  
  Volume 25 Issue 9 Pages 1127-1137  
  Keywords (down) functional diversity; leaf carbon; leaf nitrogen; nitrogen-use efficiency; photosynthetic capacity; tropical rain forest  
  Abstract Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species.  
  Address CNRS Ecol Forets Guyane, INRA, ENGREF,CIRAD, Unite Mixte Rech, Kourou 97387, French Guiana, Email: roggy.j@cirad.fr  
  Corporate Author Thesis  
  Publisher HERON PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0829-318X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000231555200005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 230  
Permanent link to this record
 

 
Author Sobotnik, J.; Sillam-Dusses, D.; Weyda, F.; Dejean, A.; Roisin, Y.; Hanus, R.; Bourguignon, T. openurl 
  Title The frontal gland in workers of Neotropical soldierless termites Type Journal Article
  Year 2010 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 97 Issue 5 Pages 495-503  
  Keywords (down) Frontal gland; Workers; Soldierless termites; Apicotermitinae; Anoplotermes; Aparatermes  
  Abstract The presence of the frontal gland is well established in termite soldiers of Rhinotermitidae, Serritermitidae, and Termitidae. It is one of their main defensive adaptations or even an exclusive weapon. The gland was also occasionally reported in alate imagoes, but never in the worker caste. Here, we report the first observation of a frontal gland in workers of several Neotropical and one African species of Apicotermitinae. The ultrastructure of Aparatermes cingulatus and Anoplotermes nr. subterraneus is described in detail. In these two species, the gland is well-developed, functional and consists of class 1 secretory cells. The presence of envelope cells, wrapping the gland, is an unusual feature, as well as the presence of several zonulae adherens, connecting neighbouring glandular cells. The frontal gland of workers is homologous to this organ in soldiers and imagoes, as evidenced by the same position in the head and its connection to the same muscle. However, the defensive role of the frontal gland in workers remains to be confirmed.  
  Address [Sobotnik, Jan; Sillam-Dusses, David; Hanus, Robert] Acad Sci Czech Republic, Inst Organ Chem & Biochem, Res Team Infochem, CR-16610 Prague 6, Czech Republic, Email: robert@uochb.cas.cz  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277318800007 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 285  
Permanent link to this record
 

 
Author Dezerald, O.; Talaga, S.; Leroy, C.; Carrias, J.-F.; Corbara, B.; Dejean, A.; Céréghino, R. url  doi
openurl 
  Title Environmental determinants of macroinvertebrate diversity in small water bodies: Insights from tank-bromeliads Type Journal Article
  Year 2014 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume 723 Issue 1 Pages 77-86  
  Keywords (down) Freshwater biodiversity; Linear mixed effect modelling; Microcosms; Phytotelmata; Ponds  
  Abstract The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits. © 2013 Springer Science+Business Media Dordrecht.  
  Address CNRS, EcoLab (UMR-CNRS 5245), 118 Route de Narbonne, 31062 Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00188158 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 517  
Permanent link to this record
 

 
Author Romero, G.Q.; Marino, N.A.C.; MacDonald, A.A.M.; Céréghino, R.; Trzcinski, M.K.; Mercado, D.A.; Leroy, C.; Corbara, B.; Farjalla, V.F.; Barberis, I.M.; Dézerald, O.; Hammill, E.; Atwood, T.B.; Piccoli, G.C.O.; Bautista, F.O.; Carrias, J.-F.; Leal, J.S.; Montero, G.; Antiqueira, P.A.P.; Freire, R.; Realpe, E.; Amundrud, S.L.; de Omena, P.M.; Campos, A.B.A.; Kratina, P.; O’Gorman, E.J.; Srivastava, D.S. doi  openurl
  Title Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics Type Journal Article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 11 Issue 3215 Pages  
  Keywords (down) fresh water; rain; fresh water; agricultural intensification; angiosperm; biomass; climate change; ecosystem function; extreme event; food web; freshwater ecosystem; Neotropic Ecozone; precipitation intensity; rainfall; trophic structure; Article; biomass; Central America; controlled study; detritivore; drought; flooding; food web; hydrology; microcosm; Neotropics; nonhuman; precipitation; predator; South America; trophic level; animal; biodiversity; Bromelia; climate change; ecosystem; flooding; food chain; Central America; South America; Animals; Biodiversity; Biomass; Bromelia; Climate Change; Droughts; Ecosystem; Floods; Food Chain; Fresh Water; Hydrology; South America  
  Abstract Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics. © 2020, The Author(s).  
  Address Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20411723 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 944  
Permanent link to this record
 

 
Author Stahl, C.; Burban, B.; Wagner, F.; Goret, J.-Y.; Bompy, F.; Bonal, D. url  openurl
  Title Influence of Seasonal Variations in Soil Water Availability on Gas Exchange of Tropical Canopy Trees Type Journal Article
  Year 2013 Publication Biotropica Abbreviated Journal  
  Volume 45 Issue 2 Pages 155-164  
  Keywords (down) French Guiana; Photosynthesis; Predawn leaf water potential; Rain forest; Relative extractable water; Respiration; Soil drought; Transpiration  
  Abstract Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree-based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions. © 2012 by The Association for Tropical Biology and Conservation.  
  Address INRA, UMR 1137 Université de Lorraine, INRA Nancy 'Ecologie et Ecophysiologie Forestière', Champenoux 54280, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 March 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 474  
Permanent link to this record
 

 
Author Remy, C.C.; Fleury, M.; Beauchene, J.; Rivier, M.; Goli, T. doi  openurl
  Title Analysis of PAH Residues and Amounts of Phenols in Fish Smoked with Woods Traditionally Used in French Guiana Type Journal Article
  Year 2016 Publication Journal of Ethnobiology Abbreviated Journal Journal of Ethnobiology  
  Volume 36 Issue 2 Pages 312-325  
  Keywords (down) French Guiana; phenols; polycyclic aromatic hydrocarbons; smoked fish; traditional knowledge  
  Abstract Fish smoking with local wood species is a traditional practice in French Guiana. We evaluated the carcinogenic risk and the smoky taste in acoupa weakfish (Cynoscion acoupa) smoked by a small Guianese company specializing in fish smoking using local wood species. The goal of this study is to promote regional economic development by encouraging the establishment of small companies offering fish smoked with local wood species in agreement with the European health norms in terms of polycyclic aromatic hydrocarbon (PAH) content in smoked fish. The fish smoked with three species of wood traditionally used in French Guiana, Parinari campestris, Caesaria grandiflora, and Laetia procera, conformed to European standards for PAH content. Their phenol contents (correlated with the smoky taste) were close to smoked salmon, the reference in Europe. Given the low rate of extractable compounds in these woods, other flavors had little chance of predominating on the smoky taste. These three tropical wood species might be used for the production of cold smoked fish in compliance with European standards for PAH residues. The flavor and consumer's acceptance of the smoked fish should now be investigated to characterize the added typicity of local woods in comparison to the commonly used European woods. © 2016 Society of Ethnobiology.  
  Address 4UMR Qualisud, CIRAD Persyst Bât, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 692  
Permanent link to this record
 

 
Author Baraloto, C.; Forget, P.M.; Goldberg, D.E. openurl 
  Title Seed mass, seedling size and neotropical tree seedling establishment Type Journal Article
  Year 2005 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 93 Issue 6 Pages 1156-1166  
  Keywords (down) French Guiana; life-history trade-offs; microhabitat; path analysis; regeneration strategy; relative growth rate; seedling survival; shade tolerance  
  Abstract 1 We examined among- and within-species effects of seed mass for seedling establishment from seed to 5 years of age in a field experiment at Paracou, French Guiana. 2 Six seeds of each of eight species were weighed and planted into each of 120 plots (1 m(2)) throughout closed-canopy forest along 12 100-m transects in 1998. 3 We described the microhabitat of each planting site using principal components derived from measurements of light availability, soil moisture, carbon and nitrogen content, and soil phosphorus availability. Although both survival and relative growth rate (RGR) increased with increasing light availability, no other microhabitat variable significantly affected seedling performance. Nor did the magnitude of microhabitat effects on survival or RGR differ among species. 4 Larger-seeded species were more likely to survive from germination to 1 year as well as from 1 to 5 years of age. RGR for seedling height during the first year post-germination was not related to seed mass, but smaller-seeded species did grow slightly faster thereafter. Path analyses revealed that correlations between seed mass and performance were explained in part because larger seeds produced larger initial seedlings, which tended to survive better but grow more slowly. 5 We also analysed within-species effects of seed mass for the larger-seeded Eperua grandiflora and Vouacapoua americana (both Caesalpiniaceae). Larger seeds produced larger seedlings in both species, but larger seeds survived better only for Eperua. Larger seedlings grew more slowly in both species, but did not offset the early (Eperua) and later (Vouacapoua) positive direct effects of seed mass on RGR that may represent contrasting strategies for reserve deployment. 6 Our results demonstrate that seed size influences performance within and among species in part because of indirect effects of initial seedling size. However, we suggest that traits tightly correlated with seed mass at the species level, such as specific leaf area, leaf longevity and photosynthetic capacity, may also contribute to interspecific performance differences.  
  Address Museum Natl Hist Nat, Dept Ecol & Gest Biodivers, UMR 5176, CNRS, Brunoy, France, Email: baraloto.c@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0477 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000233287500012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 250  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: