toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Gorsel, E.; Delpierre, N.; Leuning, R.; Black, A.; Munger, J.W.; Wofsy, S.; Aubinet, M.; Feigenwinter, C.; Beringer, J.; Bonal, D.; Chen, B.Z.; Chen, J.Q.; Clement, R.; Davis, K.J.; Desai, A.R.; Dragoni, D.; Etzold, S.; Grunwald, T.; Gu, L.H.; Heinesch, B.; Hutyra, L.R.; Jans, W.W.P.; Kutsch, W.; Law, B.E.; Leclerc, M.Y.; Mammarella, I.; Montagnani, L.; Noormets, A.; Rebmann, C.; Wharton, S. openurl 
  Title Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2 Type Journal Article
  Year 2009 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meteorol.  
  Volume 149 Issue 11 Pages 1919-1930  
  Keywords (down) Ecosystem respiration; Micrometeorology; Advection; u-star correction; Eddy covariance; Chamber; Process-based modelling  
  Abstract Micrometeorological measurements of night time ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397-403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (F-C) and change in storage (F-S) of CO2 in the few hours after sundown. The sum of F-C and F-S reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration R-Rmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of F-c + F-s extrapolated to zero light, R-LRC, and (3) with a detailed process-based forest ecosystem model, R-cast. At most sites respiration rates estimated using the u*-filter, R-ust, were smaller than R-Rmax, and R-LRC. Agreement of our approach with independent measurements indicates that R-Rmax, provides an excellent estimate of nighttime ecosystem respiration. (C) 2009 Elsevier B.V. All rights reserved.  
  Address [van Gorsel, Eva; Leuning, Ray] CSIRO Marine & Atmospher Res, Canberra, ACT 2061, Australia, Email: Eva.vangorsel@csiro.au  
  Corporate Author Thesis  
  Publisher ELSEVIER SCIENCE BV Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000270640300013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 102  
Permanent link to this record
 

 
Author Castro, H.; Fortunel, C.; Freitas, H. openurl 
  Title Effects of land abandonment on plant litter decomposition in a Montado system: relation to litter chemistry and community functional parameters Type Journal Article
  Year 2010 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume 333 Issue 1-2 Pages 181-190  
  Keywords (down) Ecosystem processes; Land use change; Leaf dry matter content; Life form; Litter quality; Mediterranean  
  Abstract Changes in land use and subsequent shifts in vegetation can influence decomposition through changes in litter quality (chemistry and structure) and alterations of soil temperature and moisture. Our aim was to study the effects of land abandonment on litter decomposition in a Mediterranean area of Montado, South Portugal. We tested the hypothesis that decomposition tends to slow down with abandonment, as woody species, richer in lignified structures, replace herbaceous species. We assessed the decomposition of community litter in situ using litterbag technique. To test the influence of local conditions, we simultaneously incubated a standard litter in situ. Our results showed that the shift from herbaceous to shrub-dominated communities lead to decreased decomposition rates. Changes in litter decomposition were primarily driven by changes in litter quality, even though the uneven pattern of litter mass loss over the experiment might reveal an effect from possible differences in microclimate. Shrub litter had higher nutrient content than herbaceous litter, which seemed to favour higher initial decomposition rates, but lower decomposition rate in the longer term. Shrubs also contribute to woody litter, richer in lignin, and secondary compounds that retard decomposition, and may play a role in increasing pools of slowly decomposing organic matter.  
  Address [Castro, Helena; Freitas, Helena] Univ Coimbra, Dept Life Sci, Ctr Funct Ecol, P-3001401 Coimbra, Portugal, Email: hecastro@ci.uc.pt  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-079X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280089400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 49  
Permanent link to this record
 

 
Author Fanin, N.; Hättenschwiler, S.; Schimann, H.; Fromin, N. url  openurl
  Title Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest Type Journal Article
  Year 2015 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 29 Issue 1 Pages 140-150  
  Keywords (down) Ecosystem functioning; Functional significance; Microbial community structure; Multiple resource limitation; Phospholipid fatty acids (PLFA); Phosphorus; Soil functioning; Tropical forest  
  Abstract Resource control over abundance, structure and functional diversity of soil microbial communities is a key determinant of soil processes and related ecosystem functioning. Copiotrophic organisms tend to be found in environments which are rich in nutrients, particularly carbon, in contrast to oligotrophs, which survive in much lower carbon concentrations. We hypothesized that microbial biomass, activity and community structure in nutrient-poor soils of an Amazonian rain forest are limited by multiple elements in interaction. We tested this hypothesis with a fertilization experiment by adding C (as cellulose), N (as urea) and P (as phosphate) in all possible combinations to a total of 40 plots of an undisturbed tropical forest in French Guiana. After 2 years of fertilization, we measured a 47% higher biomass, a 21% increase in substrate-induced respiration rate and a 5-fold higher rate of decomposition of cellulose paper discs of soil microbial communities that grew in P-fertilized plots compared to plots without P fertilization. These responses were amplified with a simultaneous C fertilization suggesting P and C colimitation of soil micro-organisms at our study site. Moreover, P fertilization modified microbial community structure (PLFAs) to a more copiotrophic bacterial community indicated by a significant decrease in the Gram-positive : Gram-negative ratio. The Fungi : Bacteria ratio increased in N fertilized plots, suggesting that fungi are relatively more limited by N than bacteria. Changes in microbial community structure did not affect rates of general processes such as glucose mineralization and cellulose paper decomposition. In contrast, community level physiological profiles under P fertilization combined with either C or N fertilization or both differed strongly from all other treatments, indicating functionally different microbial communities. While P appears to be the most critical from the three major elements we manipulated, the strongest effects were observed in combination with either supplementary C or N addition in support of multiple element control on soil microbial functioning and community structure. We conclude that the soil microbial community in the studied tropical rain forest and the processes it drives is finely tuned by the relative availability in C, N and P. Any shifts in the relative abundance of these key elements may affect spatial and temporal heterogeneity in microbial community structure, their associated functions and the dynamics of C and nutrients in tropical ecosystems.  
  Address INRA, UMR 614 Fractionnement des AgroRessources et Environnement, 2 esplanade Roland GarrosReims, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 February 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 583  
Permanent link to this record
 

 
Author Rodríguez-Pérez, H.; Hilaire, S.; Mesléard, F. url  openurl
  Title Temporary pond ecosystem functioning shifts mediated by the exotic red swamp crayfish (Procambarus clarkii): a mesocosm study Type Journal Article
  Year 2016 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume 767 Issue 1 Pages 333-345  
  Keywords (down) Ecosystem functioning; Exotic crayfish; Procambarus clarkii; Temporary pond  
  Abstract Temporary ponds, acknowledged for their conservation value, are colonized by the invasive crayfish Procambarus clarkii. We have tested the consequences of this colonization for the ecosystem under two contrasted scenarios: one single individual arrival or three individuals arrival. We recreated the temporary pond ecosystem in 1 m2 tanks to investigate the impact of the two crayfish densities. We studied the macrophyte community composition and abundance, chlorophyll a and total suspended solids concentrations, and the diversity and functional composition of micro-crustacean and macro-invertebrate communities. We observed a reduction of macrophyte biomass in experimental crayfish mesocosms in comparison with control tanks, nearly 80 and 40% less in 3 and 1 crayfish/m2 tanks, respectively. The macrophyte community shifted, followed by a filamentous algae development, an increase of bare sediment and turbidity in crayfish tanks. The macro-invertebrate community suffered a richness loss of 28 and 22%, in 3 and 1 crayfish/m2 tanks, respectively. Functionally, macro-invertebrate diversity reduction most strongly affected the grazer, detritivore and predator trophic groups. Microcrustaceans seemed not to be affected by the introduction of the crayfish. The introduction of the crayfish greatly altered the ecosystem structure and subsequently the ecosystem functioning. © 2015, Springer International Publishing Switzerland.  
  Address EcoFoG, Ecologie des Forêts de Guyane, CNRS UMR 8172, Campus Agronomique, BP 316, Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 655  
Permanent link to this record
 

 
Author Scotti, I.; Calvo-Vialettes, L.; Scotti-Saintagne, C.; Citterio, M.; Degen, B.; Bonal, D. openurl 
  Title Genetic variation for growth, morphological, and physiological traits in a wild population of the Neotropical shade tolerant rainforest tree Sextonia rubra (Mez) van der Werff (Lauraceae) Type Journal Article
  Year 2010 Publication Tree Genetics & Genomes Abbreviated Journal Tree Genet. Genomes  
  Volume 6 Issue 2 Pages 319-329  
  Keywords (down) Ecophysiological traits; Heritability; Guiana shield; Amazon; Ecological genetics  
  Abstract Quantitative genetic diversity is a fundamental component of the interaction between natural populations and their environment. In breeding programmes, quantitative genetic studies on tropical trees have so far focused on fast-growing, light-demanding species, but no information exists on shade-tolerant, slow-growing species. For this study, 27 3-year-old open-pollinated families of the Neotropical shade-tolerant rainforest tree Sextonia rubra were measured in semicontrolled conditions for 20 morphological, growth, and photosynthesis traits; the effect of genetic relatedness, habitat of provenance, and mother tree status on seedling traits was analysed. Nine traits displayed significant genetic effects, while mother tree status and habitat effects were not significant (P > 0.05) for an y trait. Estimated heritability varied between 0.14 and 0.28, with growth-related traits having the highest values. Additive genetic variation correlated positively with nonheritable variation, suggesting that ecological-evolutionary factors increasing or decreasing additive genetic variance may also affect nonheritable variation in the same direction. Our results suggest that quantitative genetic variability should be taken into account in ecological studies on, and in the management of, natural tropical rainforests; further research is needed to investigate genetic x environment interactions, in particular from the point of view of the genetic response of shade-tolerant plant species to variations in light availability.  
  Address [Scotti, Ivan; Scotti-Saintagne, Caroline; Bonal, Damien] INRA, Unite Mixte Rech Ecol Forets Guyane, Kourou 97387, French Guiana, Email: ivan.scotti@ecofog.gf  
  Corporate Author Thesis  
  Publisher SPRINGER HEIDELBERG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-2942 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274112600015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 68  
Permanent link to this record
 

 
Author Rodrigues, A.M.S.; Stien, D.; Eparvier, V.; Espindola, L.S.; Beauchene, J.; Amusant, N.; Lemenager, N.; Baudasse, C.; Raguin, L. url  openurl
  Title The wood preservative potential of long-lasting Amazonian wood extracts Type Journal Article
  Year 2012 Publication International Biodeterioration and Biodegradation Abbreviated Journal  
  Volume 75 Issue Pages 146-149  
  Keywords (down) Durable wood extracts; Handroanthus serratifolius; Rotting fungi; Wood preservation  
  Abstract Investigations were carried out on the efficacy of extracts from seven Amazonian woods (Bagassa guianensis, Manilkara huberi, Sextonia rubra, Vouacapoua americana, Andira surinamensis, Handroanthus serratifolius, and Qualea rosea) with varying natural durability to reduce soft-rot degradation in a 6-wk soil-bed test. Six of the wood extracts had shown efficacy against soft-rot fungi. In particular, the preservation efficacies of B. guianensis, H. serratifolius, and S. rubra extracts were highly significant up to retention levels of 23, 25, and 12 kg m-3, respectively. Three extracts (A. surinamensis, H. serratifolius, and Q. rosea) were then tested against Gloeophyllum trabeum (brown rot) and Trametes versicolor (white rot), in an agar-block test. H. serratifolius wood extract was very efficient at protecting P. sylvestris samples at 5.1 kg m-3 against the brown rot. This extract could be used as a basis for new wood protectant formulations. © 2012 Elsevier Ltd.  
  Address Laboratoire de Préservation, CIRAD, 73 rue JF Breton, Montpellier 34398, TA B 40-16, cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 January 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 457  
Permanent link to this record
 

 
Author Medjigbodo, G.; Rozière, E.; Charrier, K.; Izoret, L.; Loukili, A. url  doi
openurl 
  Title Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin Type Journal Article
  Year 2018 Publication Construction and Building Materials Abbreviated Journal  
  Volume 183 Issue Pages 114-126  
  Keywords (down) Durability; Limestone filler; Metakaolin; Shrinkage; Strength; Ternary binders  
  Abstract A partial replacement of the clinker by latent hydraulic or pozzolanic materials is encouraged due to environmental and specific technical requirements. Such substitution remains limited to a relatively low level (less than 30% by mass of cementitious materials). An experimental research work was carried out on mortars made with binary and ternary binders (Portland cement; metakaolin; limestone filler) to reach 45% total replacement. In order to investigate the activating effect of reduced water-to-cement ratio, two series of mixtures were designed with W/C0 of 0.42 and 0.5. Their heat of hydration, portlandite content, shrinkage, porosity, and carbonation were monitored. The tests were performed to understand the evolution of their relative strength (activity index) and durability parameters. The strength development of mortars with ternary binders was found to depend on metakaolin properties, including manufacturing process and particle size distribution. Reducing W/C0 ratio accelerated pozzolanic reaction and allowed improving early-age strength and durability parameters. © 2018 Elsevier Ltd  
  Address Association Technique de l'Industrie des Liants Hydrauliques (ATILH), 7 place de la Défense, Paris La Défense, 92974, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 814  
Permanent link to this record
 

 
Author Clair, B.; Jaouen, G.; Beauchene, J.; Fournier, M. openurl 
  Title Mapping radial, tangential and longitudinal shrinkages and relation to tension wood in discs of the tropical tree Symphonia globulifera Type Journal Article
  Year 2003 Publication Holzforschung Abbreviated Journal Holzforschung  
  Volume 57 Issue 6 Pages 665-671  
  Keywords (down) drying shrinkage; tension wood; Symphonia globulifera L. f.  
  Abstract A method for measuring shrinkage resulting from drying in the three anisotropic directions is developed and tested. Measurements are performed on sawn discs, a technique which simplifies preparation and enables large numbers of measurements. Shrinkage values can be represented as a map of the disc surface. The results indicate that comparisons between shrinkage distribution and tension wood distribution on the discs show a clear relationship and can be measured with relatively high accuracy in reference to the shrinkage map. In the long term, this method could be useful in the timber industry as a means for choosing the direction in which logs are cut depending on their type of wood composition.  
  Address CIRAD ENGREF INRA, UMR Ecol Forets Guyane, Kourou 97379, French Guiana  
  Corporate Author Thesis  
  Publisher WALTER DE GRUYTER & CO Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-3830 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000186257800016 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 243  
Permanent link to this record
 

 
Author Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guehl, J.M.; Granier, A. openurl 
  Title Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2008 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 14 Issue 8 Pages 1917-1933  
  Keywords (down) dry season; ecosystem respiration; eddy covariance; gross ecosystem productivity; Neotropical rainforest; net ecosystem productivity; soil drought; solar radiation  
  Abstract The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (R-Ed) and daily gross ecosystem productivity (GEP(d)), were estimated over 2 years at a flux tower site in French Guiana, South America (5 degrees 16'54'N, 52 degrees 54'44'W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93-day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m(-2)). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower R-Ed combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m(-2). Severe drought conditions resulted in even lower R-Ed, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m(-2)), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  
  Address [Bonal, Damien; Goret, Jean-Yves; Burban, Benoit] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: damien.bonal@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257712400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 133  
Permanent link to this record
 

 
Author Aguilos, M.; Stahl, C.; Burban, B.; Hérault, B.; Courtois, E.; Coste, S.; Wagner, F.; Ziegler, C.; Takagi, K.; Bonal, D. pdf  url
doi  openurl
  Title Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest Type Journal Article
  Year 2018 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue 1 Pages  
  Keywords (down) Drought; Evapotranspiration; Radiation; Tropical rainforest; Water use efficiency; Atmospheric radiation; Carbon dioxide; Climate change; Drought; Efficiency; Evapotranspiration; Forestry; Heat radiation; Radiation effects; Soil moisture; Tropics; Water supply; Climate condition; Drought conditions; Interannual variability; Mechanistic models; Seasonal variation; Tropical ecosystems; Tropical rain forest; Water use efficiency; Ecosystems  
  Abstract Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.  
  Address Hokkaido University, Sapporo, 060-0808, Japan  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Bonal, D.; Université de Lorraine, AgroParisTech, INRA, UMR SilvaFrance; email: damien.bonal@inra.fr; References: Von Randow, C., Zeri, M., Restrepo-Coupe, N., Muza, M.N., de Gonçalves, L.G.G., Costa, M.H., Araujo, A.C., Saleska, S.R., Interannual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models (2013) Agric. For. Meteorol, 182-183, pp. 145-155; Duffy, P.B., Brando, P., Asner, G.P., Field, C.B., Projections of future meteorological drought and wet periods in the Amazon (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 13172-13177; Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C., Jones, C.D., Amazonian forest dieback under climate-carbon cycle projections for the 21st century (2004) Theor. Appl. Climatol, 78, pp. 137-156; Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S., Restrepo-Coupe, N., Heyder, U., Cramer, W., Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters (2010) Glob. Chang. Biol, 16, pp. 2476-2495; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318, p. 612; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Quesada, C.A., Drought sensitivity of the amazon rainforest (2009) Science, 323, pp. 1344-1347; Bonal, D., Burban, B., Stahl, C., Wagner, F., Hérault, B., The response of tropical rainforests to drought-Lessons from recent research and future prospects (2016) Ann. For. Sci, 73, pp. 27-44; Wang, K.C., Dickinson, R.E., A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability (2012) Rev. Geophys, p. 50; Fisher, R.A., Williams, M., da Costa, A.L., Malhi, Y., da Costa, R.F., Almeida, S., Meir, P., The response of an Eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment (2007) Glob. Chang. Biol, 13, pp. 2361-2378; Costa, M.H., Biajoli, M.C., Sanches, L., Malhado, A.C.M., Hutyra, L.R., Da Rocha, H.R., Aguiar, R.G., De Araújo, A.C., Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? (2010) J. Geophys. Res. Biogeosci, 115, pp. 1-9; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Clement, R.J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos, 107, p. 8076; Hasler, N., Avissar, R., What controls evapotranspiration in the Amazon basin? (2007) J. Hydrometeorol, 8, pp. 380-395; Da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Artaxo, R., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in brazil (2009) J. Geophys. Res. Biogeosci, p. 114; Kim, Y., Knox, R.G., Longo, M., Medvigy, D., Hutyra, L.R., Pyle, E.H., Wofsy, S.C., Moorcroft, P.R., Seasonal carbon dynamics and water fluxes in an Amazon rainforest (2012) Glob. Chang. Biol, 18, pp. 1322-1334; Maeda, E.E., Ma, X., Wagner, F.H., Kim, H., Oki, T., Eamus, D., Huete, A., Evapotranspiration seasonality across the Amazon Basin (2017) Earth Syst. Dyn, 8, pp. 439-454; Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., Carbon isotope discrimination and photosynthesis (1989) Ann. Rev. Plant Physiol, 40, pp. 503-537; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci; Negrón Juárez, R.I., Hodnett, M.G., Fu, R., Gouden, M.L., von Randow, C., Control of dry season evapotranspiration over the Amazonian forest as inferred from observation at a Southern Amazon forest site (2007) J. Clim, 20, pp. 2827-2839; Fisher, J.B., Malhi, Y., Bonal, D., Da Rocha, H.R., De Araújo, A.C., Gamo, M., Goulden, M.L., Kondo, H., The land-atmosphere water flux in the tropics (2009) Glob. Chang. Biol; Christoffersen, B.O., Restrepo-Coupe, N., Arain, M.A., Baker, I.T., Cestaro, B.P., Ciais, P., Fisher, J.B., Gulden, L., Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado (2014) Agric. For. Meteorol, 191, pp. 33-50; Da Costa, A.C.L., Rowland, L., Oliveira, R.S., Oliveira, A.A.R., Binks, O.J., Salmon, Y., Vasconcelos, S.S., Poyatos, R., Stand dynamics modulate water cycling and mortality risk in droughted tropical forest (2018) Glob. Chang. Biol; Huang, M., Piao, S., Sun, Y., Ciais, P., Cheng, L., Mao, J., Poulter, B., Wang, Y., Change in terrestrial ecosystem water-use efficiency over the last three decades (2015) Glob. Chang. Biol; Brienen, R.J.W., Wanek, W., Hietz, P., Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species (2011) Trees, 25, pp. 103-113; Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Wen, X., Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables (2008) New Phytol, 177, pp. 927-937; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol, pp. 253-254; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B.T., Gross, P., Bonnefond, J.M., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol; Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J.B., Foken, T., Kowalski, A.S., Bernhofer, C., Estimates of the annual net carbon and water exchange of forests: The Euroflux methodology (2000) Adv. Ecol. Res, 30, pp. 113-175; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric. For. Meteorol, 151, pp. 1202-1213; Kuglitsch, F.G., Reichstein, M., Beer, C., Carrara, A., Ceulemans, R., Granier, A., Janssens, I.A., Loustau, D., Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements (2008) Biogeosci. Discuss, 5, pp. 4481-4519; Dekker, S.C., Groenendijk, M., Booth, B.B.B., Huntingford, C., Cox, P.M., Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations (2016) Earth Syst. Dyn, 7, pp. 525-533; Yang, Y., Guan, H., Batelaan, O., McVicar, T.R., Long, D., Piao, S., Liang, W., Simmons, C.T., Contrasting responses of water use efficiency to drought across global terrestrial ecosystems (2016) Sci. Rep, 6, p. 23284; Granier, A., Bréda, N., Biron, P., Villette, S., A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands (1999) Ecol. Model, 116, pp. 269-283; Kume, T., Takizawa, H., Yoshifuji, N., Tanaka, K., Tantasirin, C., Tanaka, N., Suzuki, M., Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand (2007) For. Ecol. Manag, 238, pp. 220-230; Xiao, J., Sun, G., Chen, J., Chen, H., Chen, S., Dong, G., Gao, S., Han, S., Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China (2013) Agric. For. Meteorol; Boese, S., Jung, M., Carvalhais, N., Reichstein, M., The importance of radiation for semi-empirical water-use efficiency models (2017) Biogeosciences, 14, pp. 3015-3026; Bonal, D., Ponton, S., Le Thiec, D., Richard, B., Ningre, N., Hérault, B., Ogée, J., Sabatier, D., Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: An historical δ13C and δ18O approach using herbarium samples (2011) Plant Cell Environ, 34, pp. 1332-1344; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of neotropical tree growth (2012) PLoS ONE, 7; Van der Molen, M.K., Dolman, A.J., Ciais, P., Eglin, T., Gobron, N., Law, B.E., Meir, P., Reichstein, M., Drought and ecosystem carbon cycling (2011) Agric. For. Meteorol, 151, pp. 765-773; Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) For. Ecol. Manag, 259, pp. 660-684; Da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D., De Freitas, H.C., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol. Appl, 14, pp. 22-32; Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Evans, R., FLUXNET: A New tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities (2001) Bull. Am. Meteorol. Soc, 82, pp. 2415-2434; Stahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., Bonal, D., Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? (2013) Oecologia, 173, pp. 1191-1201; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature; Lee, J.-E., Boyce, K., Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America (2010) J. Geophys. Res; Xiao, X., Zhang, Q., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S., Moore, B., Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest (2005) Remote Sens. Environ, 94, pp. 105-122; Wagner, F.H., Hérault, B., Bonal, D., Stahl, C., Anderson, L.O., Baker, T.R., Becker, G.S., Botosso, P.C., Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests (2016) Biogeosciences, 13, pp. 2537-2562; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of Seasonal Variations in Soil Water Availability on Gas Exchange of Tropical Canopy Trees (2013) Biotropica, 45, pp. 155-164; Maréchaux, I., Bonal, D., Bartlett, M.K., Burban, B., Coste, S., Courtois, E.A., Dulormne, M., Mirabel, A., Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest (2018) Funct. Ecol, 32, pp. 2285-2297; Chaves, M.M., Maroco, J.P., Pereira, J.S., Understanding plant responses to drought-from genes to the whole plant (2003) Funct. Plant Biol, 30, pp. 239-264 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: