|   | 
Details
   web
Records
Author Sullivan, M.J.P.; Talbot, J.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Begne, S.K.; Chave, J.; Cuni-Sanchez, A.; Hubau, W.; Lopez-Gonzalez, G.; Miles, L.; Monteagudo-Mendoza, A.; Sonké, B.; Sunderland, T.; Ter Steege, H.; White, L.J.T.; Affum-Baffoe, K.; Aiba, S.-I.; De Almeida, E.C.; De Oliveira, E.A.; Alvarez-Loayza, P.; Dávila, E.Á.; Andrade, A.; Aragão, L.E.O.C.; Ashton, P.; Aymard, G.A.; Baker, T.R.; Balinga, M.; Banin, L.F.; Baraloto, C.; Bastin, J.-F.; Berry, N.; Bogaert, J.; Bonal, D.; Bongers, F.; Brienen, R.; Camargo, J.L.C.; Cerón, C.; Moscoso, V.C.; Chezeaux, E.; Clark, C.J.; Pacheco, Á.C.; Comiskey, J.A.; Valverde, F.C.; Coronado, E.N.H.; Dargie, G.; Davies, S.J.; De Canniere, C.; Djuikouo, M.N.; Doucet, J.-L.; Erwin, T.L.; Espejo, J.S.; Ewango, C.E.N.; Fauset, S.; Feldpausch, T.R.; Herrera, R.; Gilpin, M.; Gloor, E.; Hall, J.S.; Harris, D.J.; Hart, T.B.; Kartawinata, K.; Kho, L.K.; Kitayama, K.; Laurance, S.G.W.; Laurance, W.F.; Leal, M.E.; Lovejoy, T.; Lovett, J.C.; Lukasu, F.M.; Makana, J.-R.; Malhi, Y.; Maracahipes, L.; Marimon, B.S.; Junior, B.H.M.; Marshall, A.R.; Morandi, P.S.; Mukendi, J.T.; Mukinzi, J.; Nilus, R.; Vargas, P.N.; Camacho, N.C.P.; Pardo, G.; Peña-Claros, M.; Petronelli, P.; Pickavance, G.C.; Poulsen, A.D.; Poulsen, J.R.; Primack, R.B.; Priyadi, H.; Quesada, C.A.; Reitsma, J.; Réjou-Méchain, M.; Restrepo, Z.; Rutishauser, E.; Salim, K.A.; Salomão, R.P.; Samsoedin, I.; Sheil, D.; Sierra, R.; Silveira, M.; Slik, J.W.F.; Steel, L.; Taedoumg, H.; Tan, S.; Terborgh, J.W.; Thomas, S.C.; Toledo, M.; Umunay, P.M.; Gamarra, L.V.; Vieira, I.C.G.; Vos, V.A.; Wang, O.; Willcock, S.; Zemagho, L.
Title Diversity and carbon storage across the tropical forest biome Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 7 Issue (up) Pages 39102
Keywords
Abstract Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-Tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity. © The Author(s) 2017.
Address School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 3 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 725
Permanent link to this record
 

 
Author Odonne, G.; Houel, E.; Bourdy, G.; Stien, D.
Title Treating leishmaniasis in Amazonia: A review of ethnomedicinal concepts and pharmaco-chemical analysis of traditional treatments to inspire modern phytotherapies Type Journal Article
Year 2017 Publication Journal of Ethnopharmacology Abbreviated Journal Journal of Ethnopharmacology
Volume 199 Issue (up) Pages 211-230
Keywords Amazonia; Distribution indexes; Ethnomedecine; Interculturality; Leishmaniasis; Medicinal plants; Traditional medicine
Abstract Ethnopharmacological relevance Cutaneous and mucocutaneous leishmaniasis are neglected tropical diseases that occur in all intertropical regions of the world. Amazonian populations have developed an abundant knowledge of the disease and its remedies. Therefore, we undertook to review traditional antileishmanial plants in Amazonia and have developed new tools to analyze this somewhat dispersed information. Material and methods A literature review of traditional remedies for cutaneous/mucocutaneous leishmaniasis in the Amazon was conducted and the data obtained was used to calculate distribution indexes designed to highlight the most relevant uses in Amazonia. The cultural distribution index represents the distribution rate of a given taxon among different cultural groups and was calculated as the ratio of the number of groups using the taxon to the total number of groups cited. The geographical distribution index allowed us to quantify spatial distribution of a taxon's uses in Amazonia and was calculated geometrically by measuring the average distance between the points where uses have been reported and the barycenter of those points. The general distribution index was defined as an arithmetic combination of the previous two and provides information on both cultural and spatial criteria. Results 475 use reports, concerning 291 botanical species belonging to 83 families have been gathered depicted from 29 sources. Uses concern 34 cultural groups. While the use of some taxa appears to be Pan-Amazonian, some others are clearly restricted to small geographical regions. Particular attention has been paid to the recipes and beliefs surrounding treatments. Topical application of the remedies dominated the other means of administration and this deserves particular attention as the main treatments against Neotropical leishmaniasis are painful systemic injections. The data set was analyzed using the previously defined distribution indexes and the most relevant taxa were further discussed from a phytochemical and pharmacological point of view. Conclusions The Amazonian biodiversity and cultural heritage host a fantastic amount of data whose systematic investigation should allow a better large-scale understanding of the dynamics of traditional therapies and the consequent discovery of therapeutic solutions for neglected diseases. Distribution indices are indeed powerful tools for emphasizing the most relevant treatments against a given disease and should be very useful in the meta-analysis of other regional pharmacopeia. This focus on renowned remedies that have not yet benefitted from extended laboratory studies, could stimulate future research on new treatments of natural origin for leishmaniasis. © 2017 Elsevier Ireland Ltd
Address Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 27 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 737
Permanent link to this record
 

 
Author Devault, D.A.; Lévi, Y.; Karolak, S.
Title Applying sewage epidemiology approach to estimate illicit drug consumption in a tropical context: Bias related to sewage temperature and pH Type Journal Article
Year 2017 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 584-585 Issue (up) Pages 252-258
Keywords Cannabis; Degradation; H2s; Half-life; Illicit drugs; Wastewater
Abstract Illicit drug consumption can be estimated from drug target residue (DTR) in wastewater, with the reliability of results being partly linked to DTR stability in the sewage network. However, wastewater temperature and pH drive the stability of molecules and, in this context, tropical conditions must be studied to specify the impact of residence time in the sewage network on DTR degradation. Warmth enhances biotic and abiotic processes such as degradation, leading to a decrease in oxygen content, and consequently, early diagenesis conditions in wastewater. In this study, we conduct laboratory studies under acidic pH and high temperature (30 °C) conditions to determine the degradation half-lives of cocaine (COC), tetrahydrocannabinol, and heroine targets, allowing COC/benzoylecgonine (BZE) ratio variations to be predicted in sewage networks. A rapid COC degradation is observed, as already reported in the literature but without a short-term significant difference between 20 °C and 30 °C. Acidic pH seems to prevent degradation. Thus, theoretically, the use of COC as DTR is only reliable in acidic conditions, with the decrease in COC concentration being 6% at 8 h, but over 40% in other conditions. By contrast, the use of BZE as DTR to estimate COC consumption, which is performed in practice, can be undertaken with the same back-calculation equation as used in temperate countries. However, 11-nor-delta-9-carboxytetrahydrocannabinol stability is more influenced by high temperature: concentration levels after 24 h are 20% lower at 30 °C than at 20 °C, corresponding to a 20% and 40% decrease, respectively. Based on a mean residence time of 8 h, underestimated cannabis consumption is close to 15% in tropical contexts, which is double that of temperate areas. © 2017 Elsevier B.V.
Address Public Health and Environnement Laboratory, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 8 March 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 741
Permanent link to this record
 

 
Author Salas-Lopez, A.
Title Predicting resource use in ant species and entire communities by studying their morphological traits: Influence of habitat and subfamily Type Journal Article
Year 2017 Publication Ecological Indicators Abbreviated Journal Ecol. Indic.
Volume 78 Issue (up) Pages 183-191
Keywords Biodiversity-ecosystem functioning relationships; Ecosystem process; Food niche; Formicidae; Habitat filtering; Indicator; Land-use; Morphological traits; Taxonomic conservatism; Biodiversity; Ecology; Indicators (instruments); Land use; Natural resources management; Ecosystem functioning; Ecosystem process; Formicidae; Morphological traits; Taxonomic conservatism; Ecosystems; Formicidae
Abstract I investigated whether the morphological traits of Neotropical ants can be used to infer food resource use by individual species and by entire communities, and whether these relationships are related to habitat type and/or by morphological differences between ant subfamilies. I attracted ants using food baits that represented different ecological processes (e.g. predation, granivory, detritivory, nectarivory) in five habitat types along a land-use gradient (from forests to gardens). I assessed ant activity at the baits and characterized 64 species from six subfamilies according to their food use and community-level resource exploitation intensity in the different habitats. Next, I performed a Mantel test to reveal the relationships between 13 morphological measures and resource use at the species level. I then used ant clades (i.e. subfamily) and habitat to rank the ants along three axes of variation in relation to their morphology and food resource use. Finally, I tested whether associations existed between the community-level exploitation intensity for such resources and the distribution of morphological trait values using the “4th-corner” analysis. Morphological traits were closely linked to the species’ ability to exploit different resources. These relationships were affected by subfamily and, to a lesser extent, by habitat type. The characterization of trait sets for entire communities was not useful, however, in predicting the intensity of the exploitation of different types of resources in varying environmental conditions. I conclude that morphological traits are accurate predictors of the ecology of species, but they should be used with caution when trying to understand community-level patterns. © 2017 Elsevier Ltd
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 8 April 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 747
Permanent link to this record
 

 
Author Grau, O.; Peñuelas, J.; Ferry, B.; Freycon, V.; Blanc, L.; Desprez, M.; Baraloto, C.; Chave, J.; Descroix, L.; Dourdain, A.; Guitet, S.; Janssens, I.A.; Sardans, J.; Herault, B.
Title Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 7 Issue (up) Pages 45017
Keywords biomass; forest structure; French Guiana; mortality; nutrient availability; nutrient content; nutrient cycling; nutrient uptake; productivity; soil; storage; tropical rain forest
Abstract Tropical forests store large amounts of biomass despite they generally grow in nutrient-poor soils, suggesting that the role of soil characteristics in the structure and dynamics of tropical forests is complex. We used data for >34 000 trees from several permanent plots in French Guiana to investigate if soil characteristics could predict the structure (tree diameter, density and aboveground biomass), and dynamics (growth, mortality, aboveground wood productivity) of nutrient-poor tropical forests. Most variables did not covary with site-level changes in soil nutrient content, indicating that nutrient-cycling mechanisms other than the direct absorption from soil (e.g. the nutrient uptake from litter, the resorption, or the storage of nutrients in the biomass), may strongly control forest structure and dynamics. Ecosystem-level adaptations to low soil nutrient availability and long-term low levels of disturbance may help to account for the lower productivity and higher accumulation of biomass in nutrient-poor forests compared to nutrient-richer forests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 8 April 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 748
Permanent link to this record
 

 
Author Dejean, A.; Rodríguez-Pérez, H.; Carpenter, J.M.; Azémar, F.; Corbara, B.
Title The predatory behavior of the Neotropical social wasp Polybia rejecta Type Journal Article
Year 2017 Publication Behavioural Processes Abbreviated Journal
Volume 140 Issue (up) Pages 161-168
Keywords Epiponine wasps; Polistinae; Predation; Prey selection; Recruitment; Vespidae
Abstract Abstract We experimentally studied the predatory behavior of Polybia rejecta (Vespidae, Polistinae, Epiponini) towards 2–88 mm-long insects attracted to a UV light trap. Foragers, which began to hunt at 6:30, selected 4–14 mm-long prey insects. Prey detection by sight by hovering wasps was confirmed using decoys. After the wasps landed and walked along a sinuous path, prey were detected by contact or from a distance (1–3 cm). This was followed by seizure, stinging (contrarily to most other known cases), prey manipulation and retrieval. Prey that flew off might be caught in flight. The prey load, representing 30.7% of a forager’s weight, was optimized by capturing up to six small prey or two medium-sized prey successively (both of which might be consumed in situ). The foragers cut off the wings of larger prey or cut them into two pieces and returned to gather the second piece. The handling time increased exponentially with the weight of the prey. Partial loading (i.e., retrieving a load much inferior to the maximum possible) was likely related to social facilitation, a form of nest-based recruitment that was demonstrated through the experimental elimination of local enhancement by removing foragers (both mechanisms favor the exploitation of favorable patches).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 751
Permanent link to this record
 

 
Author Fukami, T.; Nakajima, M.; Fortunel, C.; Fine, P.V.A.; Baraloto, C.; Russo, S.E.; Peay, K.G.
Title Geographical variation in community divergence: insights from tropical forest monodominance by ectomycorrhizal trees Type Journal Article
Year 2017 Publication American Naturalist Abbreviated Journal American Naturalist
Volume 190 Issue (up) Pages S105-S122
Keywords Community assembly; Mycorrhizae; Plant traits; Plant-soil feedback; Priority effects; Species pools
Abstract Convergence occurs in both species traits and community structure, but how convergence at the two scales influences each other remains unclear. To address this question, we focus on tropical forest monodominance, in which a single, often ectomycorrhizal (EM) tree species occasionally dominates forest stands within a landscape otherwise characterized by diverse communities of arbuscular mycorrhizal (AM) trees. Such monodominance is a striking potential example of community divergence resulting in alternative stable states. However, it is observed only in some tropical regions. A diverse suite of AM and EM trees locally codominate forest stands elsewhere. We develop a hypothesis to explain this geographical difference using a simulation model of plant community assembly. Simulation results suggest that in a region with a few EM species (e.g., South America), EM trees experience strong selection for convergent traits that match the abiotic conditions of the environment. Consequently, EM species successfully compete against other species to form monodominant stands via positive plant-soil feedbacks. By contrast, in a region with many EM species (e.g., Southeast Asia), species maintain divergent traits because of complex plant-soil feedbacks, with no species having traits that enablemonodominance. An analysis of plant trait data from Borneo and Peruvian Amazon was inconclusive. Overall, this work highlights the utility of geographical comparison in understanding the relationship between trait convergence and community convergence. © 2017 by The University of Chicago.
Address School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 761
Permanent link to this record
 

 
Author Jona Lasinio, G.; Pollice, A.; Marcon, E.; Fano, E.A.
Title Assessing the role of the spatial scale in the analysis of lagoon biodiversity. A case-study on the macrobenthic fauna of the Po River Delta Type Journal Article
Year 2017 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 80 Issue (up) Pages 303-315
Keywords Biodiversity partitioning; Lagoon biodiversity; Macrobenthic fauna; Mixed effects models; Tsallis entropy
Abstract The analysis of benthic assemblages is a valuable tool to describe the ecological status of transitional water ecosystems, but species are extremely sensitive and respond to both microhabitat and seasonal differences. The identification of changes in the composition of the macrobenthic community in specific microhabitats can then be used as an “early warning” for environmental changes which may affect the economic and ecological importance of lagoons, through their provision of Ecosystem Services. From a conservational point of view, the appropriate definition of the spatial aggregation level of microhabitats or local communities is of crucial importance. The main objective of this work is to assess the role of the spatial scale in the analysis of lagoon biodiversity. First, we analyze the variation in the sample coverage for alternative aggregations of the monitoring stations in three lagoons of the Po River Delta. Then, we analyze the variation of a class of entropy indices by mixed effects models, properly accounting for the fixed effects of biotic and abiotic factors and random effects ruled by nested sources of variability corresponding to alternative definitions of local communities. Finally, we address biodiversity partitioning by a generalized diversity measure, namely the Tsallis entropy, and for alternative definitions of the local communities. The main results obtained by the proposed statistical protocol are presented, discussed and framed in the ecological context. © 2017 Elsevier Ltd
Address Dipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Ferrara, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 12 June 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 755
Permanent link to this record
 

 
Author Groc, S.; Delabie, J.H.C.; Fernandez, F.; Petitclerc, F.; Corbara, B.; Leponce, M.; Céréghino, R.; Dejean, A.
Title Litter-dwelling ants as bioindicators to gauge the sustainability of small arboreal monocultures embedded in the Amazonian rainforest Type Journal Article
Year 2017 Publication Ecological Indicators Abbreviated Journal
Volume 82 Issue (up) Pages 43-49
Keywords Ant diversity; Community alteration; Forest species; Functional traits; Human disturbance; Tree monocultures
Abstract One of the greatest threats to biodiversity and the sustainable functioning of ecosystems is the clearing of forests for agriculture. Because litter-dwelling ants are very good bioindicators of man-made disturbance, we used them to compare monospecific plantations of acacia trees, cocoa trees, rubber trees and pine trees with the surrounding Neotropical rainforest (in contrast to previous studies on forest fragments embedded in industrial monocultures). Although the global level of species turnover was weak, species richness decreased along a gradient from the forest (including a treefall gap) to the tree plantations among which the highest number of species was noted for the cocoa trees, which are known to be a good compromise between agriculture and conservation. Species composition was significantly different between natural habitats and the plantations that, in turn, were different from each other. Compared to the forest, alterations in the ant communities were (1) highest for the acacia and rubber trees, (2) intermediate for the cocoa trees, and, (3) surprisingly, far lower for the pine trees, likely due to very abundant litter. Functional traits only separated the rubber tree plantation from the other habitats due to the higher presence of exotic and leaf-cutting ants. This study shows that small monospecific stands are likely sustainable when embedded in the rainforest and that environmentally-friendly strategies can be planned accordingly. © 2017 Elsevier Ltd
Address Ecolab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 9 July 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 758
Permanent link to this record
 

 
Author Ploton, P.; Barbier, N.; Couteron, P.; Antin, C.M.; Ayyappan, N.; Balachandran, N.; Barathan, N.; Bastin, J.-F.; Chuyong, G.; Dauby, G.; Droissart, V.; Gastellu-Etchegorry, J.-P.; Kamdem, N.G.; Kenfack, D.; Libalah, M.; Mofack, G., II; Momo, S.T.; Pargal, S.; Petronelli, P.; Proisy, C.; Réjou-Méchain, M.; Sonké, B.; Texier, N.; Thomas, D.; Verley, P.; Zebaze Dongmo, D.; Berger, U.; Pélissier, R.
Title Toward a general tropical forest biomass prediction model from very high resolution optical satellite images Type Journal Article
Year 2017 Publication Remote Sensing of Environment Abbreviated Journal
Volume 200 Issue (up) Pages 140-153
Keywords Canopy structure; Forest carbon; Fourier transform; Lacunarity; Passive optical imagery; Redd; Texture; Tropical forests
Abstract Very high spatial resolution (VHSR) optical satellite imagery has shown good potential to provide non-saturating proxies of tropical forest aboveground biomass (AGB) from the analysis of canopy texture, for instance through the Fourier Transform Textural Ordination method. Empirical case studies however showed that the relationship between Fourier texture features and forest AGB varies across forest types and regions of the world, limiting model transferability. A better understanding of the biophysical mechanisms on which canopy texture – forest AGB relation relies is a prerequisite to move toward broad scale applications. Here we simulated VHSR optical canopy scenes in identical sun-sensor geometry for 279 1-ha tropical forest inventory plots distributed across the tropics. Our aim was to assess the respective merits and complementarity of two types of texture analysis techniques (i.e. Fourier and lacunarity) on a set of forests with contrasted structure and geographical origin, and develop a general texture-based approach for tropical forest AGB mapping. Across forests, Fourier texture captured a gradient of stands mean crown size reflecting well the progressive changes in stand structure throughout forest aggradation phase (e.g. Pearson's r = − 0.42 with basal area) while lacunarity texture captured a gradient of canopy openness (, i.e. Pearson's r = − 0.57 with stand gap fraction). Both types of texture indices were highly complementary for predicting forest AGB at the global level (so-called FL-model). The residual error of the FL-model was structured across sites and could be partially captured with a bioclimatic proxy, further improving the performance of the global model (so-called FLE-model) and reducing site-level biases. The FLE model was tested on a set of real Pleiades images covering a mosaic of high-biomass forests in the Congo basin (mean AGB over 49 field plots: 359 ± 98 Mg ha− 1), leading to a significant relationship (R2 = 0.47 on validation data) with reasonable error levels (< 25% rRMSE). The increasing availability of VHSR optical sensors (such as from constellations of small satellite platforms) raises the possibility of routine repeated imaging of the world's tropical forests and suggests that texture-based analyses could become an essential tool in international efforts to monitor carbon emissions from deforestation and forest degradations (REDD +). © 2017 Elsevier Inc.
Address Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 25 September 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 766
Permanent link to this record