toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caron, H.; Molino, J.-F.; Sabatier, D.; Léger, P.; Chaumeil, P.; Scotti-Saintagne, C.; Frigério, J.-M.; Scotti, I.; Franc, A.; Petit, R.J. pdf  url
doi  openurl
  Title Chloroplast DNA variation in a hyperdiverse tropical tree community Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 9 Issue (down) 8 Pages 4897-4905  
  Keywords chloroplast DNA; DNA barcoding; genetic diversity; hybridization; incomplete lineage sorting; introgression; species diversity; tropical trees  
  Abstract We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression. We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment. Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%). Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.  
  Address INRA, UR629 Ecologie des Forêts Méditerranéennes, URFM, Avignon, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 870  
Permanent link to this record
 

 
Author Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; Derroire, G.; dos-Santos, M.N.; Meyer, V.; Saleska, S.; Trumbore, S.; Vincent, G. doi  openurl
  Title Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.  
  Volume 125 Issue (down) 8 Pages e2020JG005677  
  Keywords Amazon; drought; ecosystem modeling; evapotranspiration; forest degradation; remote sensing; carbon cycle; deforestation; dry season; evapotranspiration; hydrological cycle; logging (timber); net primary production; remote sensing; sensible heat flux; tropical forest; understory; water stress; Amazon River  
  Abstract Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems. ©2020. The Authors.  
  Address AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21698953 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 957  
Permanent link to this record
 

 
Author Migliavacca, Mirco ; Musavi, Talie ; Mahecha, Miguel D. ; Nelson, Jacob A. ; Knauer, Jurgen ; Baldocchi, Dennis D. ; Perez-Priego, Oscar ; Christiansen, Rune ; Peters, Jonas ; Anderson, Karen ; Bahn, Michael ; Black, T. Andrew ; Blanken, Peter D. ; and all .................. doi  openurl
  Title The three major axes of terrestrial ecosystem function Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 598 Issue (down) 7881 Pages 468-472  
  Keywords  
  Abstract The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range o  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1044  
Permanent link to this record
 

 
Author Seibold, Sebastien ; Rammer, Werner ; Hothorn, Torsten ; Seidl, Rupert ; Ulyshen, Michael ; Lorz, Janina ; Cadotte, Marc ; Lindenmayer, David ; Adhikari, Yagya ; Aragón, Roxana ; Bae, Soyeon ; Baldrian, Petr ; Barimani Varandi, Hassan ; Barlow, Jos ; Bässler, Clauss ; Beauchêne, Jacques ; and all ................... doi  openurl
  Title The contribution of insects to global forest deadwood decomposition Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 597 Issue (down) 7874 Pages 77-81  
  Keywords  
  Abstract The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.  
  Address  
  Corporate Author Thesis  
  Publisher NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1046  
Permanent link to this record
 

 
Author Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.; de-Miguel, S.; Zhou, M.; Picard, N.; Herault, B.; Zhao, X.; Zhang, C.; Routh, D.; Peay, K.G.; Abegg, M.; Adou Yao, C.Y.; Alberti, G.; Almeyda Zambrano, A.; Alvarez-Davila, E.; Alvarez-Loayza, P.; Alves, L.F.; Ammer, C.; Antón-Fernández, C.; Araujo-Murakami, A.; Arroyo, L.; Avitabile, V.; Aymard, G.; Baker, T.; Bałazy, R.; Banki, O.; Barroso, J.; Bastian, M.; Bastin, J.-F.; Birigazzi, L.; Birnbaum, P.; Bitariho, R.; Boeckx, P.; Bongers, F.; Bouriaud, O.; Brancalion, P.H.S.; Brandl, S.; Brearley, F.Q.; Brienen, R.; Broadbent, E.; Bruelheide, H.; Bussotti, F.; Cazzolla Gatti, R.; Cesar, R.; Cesljar, G.; Chazdon, R.; Chen, H.Y.H.; Chisholm, C.; Cienciala, E.; Clark, C.J.; Clark, D.; Colletta, G.; Condit, R.; Coomes, D.; Cornejo Valverde, F.; Corral-Rivas, J.J.; Crim, P.; Cumming, J.; Dayanandan, S.; de Gasper, A.L.; Decuyper, M.; Derroire, G.; DeVries, B.; Djordjevic, I.; Iêda, A.; Dourdain, A.; Obiang, N.L.E.; Enquist, B.; Eyre, T.; Fandohan, A.B.; Fayle, T.M.; Feldpausch, T.R.; Finér, L.; Fischer, M.; Fletcher, C.; Fridman, J.; Frizzera, L.; Gamarra, J.G.P.; Gianelle, D.; Glick, H.B.; Harris, D.; Hector, A.; Hemp, A.; Hengeveld, G.; Herbohn, J.; Herold, M.; Hillers, A.; Honorio Coronado, E.N.; Huber, M.; Hui, C.; Cho, H.; Ibanez, T.; Jung, I.; Imai, N.; Jagodzinski, A.M.; Jaroszewicz, B.; Johannsen, V.; Joly, C.A.; Jucker, T.; Karminov, V.; Kartawinata, K.; Kearsley, E.; Kenfack, D.; Kennard, D.; Kepfer-Rojas, S.; Keppel, G.; Khan, M.L.; Killeen, T.; Kim, H.S.; Kitayama, K.; Köhl, M.; Korjus, H.; Kraxner, F.; Laarmann, D.; Lang, M.; Lewis, S.; Lu, H.; Lukina, N.; Maitner, B.; Malhi, Y.; Marcon, E.; Marimon, B.S.; Marimon-Junior, B.H.; Marshall, A.R.; Martin, E.; Martynenko, O.; Meave, J.A.; Melo-Cruz, O.; Mendoza, C.; Merow, C.; Monteagudo Mendoza, A.; Moreno, V.; Mukul, S.A.; Mundhenk, P.; Nava-Miranda, M.G.; Neill, D.; Neldner, V.; Nevenic, R.; Ngugi, M.; Niklaus, P.; Oleksyn, J.; Ontikov, P.; Ortiz-Malavasi, E.; Pan, Y.; Paquette, A.; Parada-Gutierrez, A.; Parfenova, E.; Park, M.; Parren, M.; Parthasarathy, N.; Peri, P.L.; Pfautsch, S.; Phillips, O.; Piedade, M.T.; Piotto, D.; Pitman, N.C.A.; Polo, I.; Poorter, L.; Poulsen, A.D.; Poulsen, J.R.; Pretzsch, H.; Ramirez Arevalo, F.; Restrepo-Correa, Z.; Rodeghiero, M.; Rolim, S.; Roopsind, A.; Rovero, F.; Rutishauser, E.; Saikia, P.; Saner, P.; Schall, P.; Schelhaas, M.-J.; Schepaschenko, D.; Scherer-Lorenzen, M.; Schmid, B.; Schöngart, J.; Searle, E.; Seben, V.; Serra-Diaz, J.M.; Salas-Eljatib, C.; Sheil, D.; Shvidenko, A.; Silva-Espejo, J.; Silveira, M.; Singh, J.; Sist, P.; Slik, F.; Sonké, B.; Souza, A.F.; Stereńczak, K.; Svenning, J.-C.; Svoboda, M.; Targhetta, N.; Tchebakova, N.; Steege, H.; Thomas, R.; Tikhonova, E.; Umunay, P.; Usoltsev, V.; Valladares, F.; van der Plas, F.; Van Do, T.; Vasquez Martinez, R.; Verbeeck, H.; Viana, H.; Vieira, S.; von Gadow, K.; Wang, H.-F.; Watson, J.; Westerlund, B.; Wiser, S.; Wittmann, F.; Wortel, V.; Zagt, R.; Zawila-Niedzwiecki, T.; Zhu, Z.-X.; Zo-Bi, I.C.; GFBI consortium url  doi
openurl 
  Title Climatic controls of decomposition drive the global biogeography of forest-tree symbioses Type Journal Article
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume 569 Issue (down) 7756 Pages 404-408  
  Keywords Fungi  
  Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.  
  Address Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00280836 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 872  
Permanent link to this record
 

 
Author Kunstler, G.; Falster, D.; Coomes, D.A.; Hui, F.; Kooyman, R.M.; Laughlin, D.C.; Poorter, L.; Vanderwel, M.; Vieilledent, G.; Wright, S.J.; Aiba, M.; Baraloto, C.; Caspersen, J.; Cornelissen, J.H.C.; Gourlet-Fleury, S.; Hanewinkel, M.; Herault, B.; Kattge, J.; Kurokawa, H.; Onoda, Y.; Peñuelas, J.; Poorter, H.; Uriarte, M.; Richardson, S.; Ruiz-Benito, P.; Sun, I.-F.; Ståhl, G.; Swenson, N.G.; Thompson, J.; Westerlund, B.; Wirth, C.; Zavala, M.A.; Zeng, H.; Zimmerman, J.K.; Zimmermann, N.E.; Westoby, M. url  openurl
  Title Plant functional traits have globally consistent effects on competition Type Journal Article
  Year 2016 Publication Nature Abbreviated Journal Nature  
  Volume 529 Issue (down) 7585 Pages 204-207  
  Keywords  
  Abstract Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits – wood density, specific leaf area and maximum height – consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition. © 2016 Macmillan Publishers Limited. All rights reserved.  
  Address Forestry and Forest Products Research Institute, Tsukuba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 29 January 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 653  
Permanent link to this record
 

 
Author Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; Garnier, E.; Bönisch, G.; Westoby, M.; Poorter, H.; Reich, P.B.; Moles, A.T.; Dickie, J.; Gillison, A.N.; Zanne, A.E.; Chave, J.; Joseph Wright, S.; Sheremet’ev, S.N.; Jactel, H.; Baraloto, C.; Cerabolini, B.; Pierce, S.; Shipley, B.; Kirkup, D.; Casanoves, F.; Joswig, J.S.; Günther, A.; Falczuk, V.; Rüger, N.; Mahecha, M.D.; Gorné, L.D. doi  openurl
  Title The global spectrum of plant form and function Type Journal Article
  Year 2016 Publication Nature Abbreviated Journal Nature  
  Volume 529 Issue (down) 7585 Pages 167-171  
  Keywords  
  Abstract Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 654  
Permanent link to this record
 

 
Author Brienen, R.J.W.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragaõ, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Arroyo, L.; Aymard C., G.A.; Bánki, O.S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R.G.A.; Camargo, J.L.C.; Castilho, C.V.; Chama, V.; Chao, K.J.; Chave, J.; Comiskey, J.A.; Cornejo Valverde, F.; Da Costa, L.; De Oliveira, E.A.; Di Fiore, A.; Erwin, T.L.; Fauset, S.; Forsthofer, M.; Galbraith, D.R.; Grahame, E.S.; Groot, N.; Herault, B.; Higuchi, N.; Honorio Coronado, E.N.; Keeling, H.; Killeen, T.J.; Laurance, W.F.; Laurance, S.; Licona, J.; Magnussen, W.E.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza, C.; Neill, D.A.; Nogueira, E.M.; Núñez, P.; Pallqui Camacho, N.C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Penã-Claros, M.; Pickavance, G.C.; Pitman, N.C.A.; Poorter, L.; Prieto, A.; Quesada, C.A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomaõ, R.P.; Schwarz, M.; Silva, N.; Silva-Espejo, J.E.; Silveira, M.; Stropp, J.; Talbot, J.; Ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, R.K.; Van Der Heijden, G.M.F.; Van Der Hout, P.; Guimarães Vieira, I.C.; Vieira, S.A.; Vilanova, E.; Vos, V.A.; Zagt, R.J. url  openurl
  Title Long-term decline of the Amazon carbon sink Type Journal Article
  Year 2015 Publication Nature Abbreviated Journal Nature  
  Volume 519 Issue (down) 7543 Pages 344-348  
  Keywords  
  Abstract Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models. © 2015 2015 Macmillan Publishers Limited.  
  Address Centro de Investigación y Promoción Del Campesinado, C/Nicanor Gonzalo Salvatierra Nu 362Riberalta, Bolivia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 591  
Permanent link to this record
 

 
Author Dejean, A.; Azémar, F.; Roux, O. url  openurl
  Title An invasive ant species able to counterattack marabunta raids Type Journal Article
  Year 2014 Publication Comptes Rendus Biologies Abbreviated Journal C. R. Biol.  
  Volume 337 Issue (down) 7-8 Pages 475-479  
  Keywords Antipredation; Army ants; Colony mate recognition; Eciton; Pheidole; aggression; ant; article; bioassay; Eciton burchellii; Eciton hamatum; emulsion; insect society; mass fragmentography; Neotropics; nonhuman; Pheidole megacephala  
  Abstract In the Neotropics where it was introduced, the invasive ant Pheidole megacephala counterattacked raids by the army ants Eciton burchellii or E. hamatum. The Eciton workers that returned to their bivouac were attacked and spread-eagled and most of them killed by their outgoing colony mates. Little by little the zone where returning and outgoing Eciton workers encountered one another moved away from the Pheidole nest which was no longer attacked, so that most of the colony was spared. Using a water-based technique rounded out by bioassays, we show that Pheidole compounds were transferred onto the Eciton cuticle during the counterattacks, so that outgoing workers do not recognize returning colony mates, likely perceived as potential prey. Because P. megacephala is an introduced African species, this kind of protection, which cannot be the result of coevolutive processes, corresponds to a kind of by-product due to its aggressiveness during colony defence. © 2014 Académie des sciences.  
  Address IRD, MIVEGEC (IRD 224 CNRS 5290-UM1-UM2) Équipe BEES, 911, avenue Agropolis, 34394 Montpellier cedex 5, France  
  Corporate Author Thesis  
  Publisher Elsevier Masson SAS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17683238 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2014; Coden: Crboc; Correspondence Address: Dejean, A.; CNRS UMR 8172, Écologie des Forêts de Guyane, BP 316, 97379 Kourou cedex, France; email: alain.dejean@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 557  
Permanent link to this record
 

 
Author Bremaud, I.; Minato, K.; Langbour, P.; Thibaut, B. openurl 
  Title Physico-chemical indicators of inter-specific variability in vibration damping of wood Type Journal Article
  Year 2010 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue (down) 7 Pages 707  
  Keywords damping coefficient; diversity of woods; extractives; physical properties; vibrational properties  
  Abstract The vibration damping coefficient (tan delta) of wood is an important property for acoustical uses, including musical instruments. Current difficulties in the availability of some of the preferred species call for diversification, but this comes up against the lack of systematic damping coefficient data. Keeping in mind the possible factors affecting tans, could we predict its variations between species, by using indicators that are either easily measured and/or readily available for many species? Vibrational properties, equilibrium moisture content and colorimetric parameters were assessed on 94 wood types belonging to 76 species. Experimental results were then related to data on chemical contents and physical properties from the CIRAD database. The “standard” relationship between tan delta and specific modulus of elasticity (E'/rho) explained only half of the variations. Deviations from this trend were correlated to extractives content, yet effects were not directly quantitative. Damping deviations were also correlated to colour and moisture-related properties, especially so with fibre saturation point. By taking into account a combination of moisture-related properties, colour – or extractives content, and the “standard” relationship between tans and E'/rho, we could propose simple predictive models which explain up to 89% of observed variations in tan delta between 48 species.  
  Address [Bremaud, Iris] Univ Montpellier 2, Lab Mecan & Genie Civil, CNRS, F-34095 Montpellier 5, France, Email: iris_bremaud@hotmail.com  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283532000007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 23  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: