toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Amusant, N.; Beauchene, J.; Digeon, A.; Chaix, G. url  doi
openurl 
  Title Essential oil yield in rosewood (Aniba rosaeodora Ducke): Initial application of rapid prediction by near infrared spectroscopy based on wood spectra Type Journal Article
  Year 2016 Publication Journal of Near Infrared Spectroscopy Abbreviated Journal Journal of Near Infrared Spectroscopy  
  Volume 24 Issue 6 Pages 507-515  
  Keywords Aniba rosaeodora; Calibration; Essential oil yield; Nir; Pls; Rosewood  
  Abstract Rosewood (Aniba rosaeodora) essential oil is a valuable ingredient that has long been used in the perfume and cosmetic industries. The main rosewood timber quality parameters are its essential oil yield and quality. A hydrodistillation method has been developed for yield determination, but it is time consuming. Here we tested the applicability of near infrared (NIR) spectroscopy for determining essential oil yield directly from wood powder. Essential oil from 139 wood powders was extracted via hydrodistillation. The measurements were based on the ratio between the extracted essential oil mass and the oven-dried wood mass and were correlated with the wood powder NIR spectra. The calibration model statistical findings demonstrated that NIR could be a fast and feasible alternative method for selecting trees with a high essential oil yield potential. NIR-based predictions obtained in an independent validation set indicated a high correlation (r2e = 0.92) with laboratory essential oil yield measurements. This NIR model could help wood managers in selecting trees with a high essential oil yield potential and in developing sustainable rosewood management strategies. © IM Publications LLP 2016. All rights reserved.  
  Address ESALQ-USP, Piracicaba, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 17 January 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 707  
Permanent link to this record
 

 
Author Alméras, T.; Clair, B. url  openurl
  Title Critical review on the mechanisms of maturation stress generation in trees Type Journal Article
  Year 2016 Publication Journal of the Royal Society Interface Abbreviated Journal J R Soc Interface  
  Volume 13 Issue 122 Pages  
  Keywords  
  Abstract Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 719  
Permanent link to this record
 

 
Author Morel-Journel, T.; Piponiot, C.; Vercken, E.; Mailleret, L. url  doi
openurl 
  Title Evidence for an optimal level of connectivity for establishment and colonization Type Journal Article
  Year 2016 Publication Biology Letters Abbreviated Journal Biol Lett  
  Volume 12 Issue 11 Pages 20160704  
  Keywords  
  Abstract Dispersal is usually associated with the spread of invasive species, but it also has two opposing effects, one decreasing and the other increasing the probability of establishment. Indeed, dispersal both slows population growth at the site of introduction and increases the likelihood of surrounding habitat being colonized. The connectivity of the introduction site is likely to affect dispersal, and, thus, establishment, according to the dispersal behaviour of individuals. Using individual-based models and microcosm experiments on minute wasps, we demonstrated the existence of a hump-shaped relationship between connectivity and establishment in situations in which individual dispersal resembled a diffusion process. These results suggest that there is an optimal level of connectivity for the establishment of introduced populations locally at the site of introduction, and regionally over the whole landscape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 722  
Permanent link to this record
 

 
Author Goulamoussene, Youven; Bedeau, Caroline; Descroix, Laurent; Deblauwe, Vincent; Linguet, Laurent; Herault, Bruno pdf  doi
openurl 
  Title Weak Environmental Controls of Tropical Forest Canopy Height in the Guiana Shield Remote Sensing Type Journal Article
  Year 2016 Publication Remote Sensing Abbreviated Journal Remote Sens  
  Volume 8 Issue 9 Pages 747  
  Keywords  
  Abstract Canopy height is a key variable in tropical forest functioning and for regional carbon inventories. We investigate the spatial structure of the canopy height of a tropical forest, its relationship with environmental physical covariates, and the implication for tropical forest height variation mapping. Making use of high-resolution maps of LiDAR-derived Digital Canopy Model (DCM) and environmental covariates from a Digital Elevation Model (DEM) acquired over 30,000 ha of tropical forest in French Guiana, we first show that forest canopy height is spatially correlated up to 2500 m. Forest canopy height is significantly associated with environmental variables, but the degree of correlation varies strongly with pixel resolution. On the whole, bottomland forests generally have lower canopy heights than hillslope or hilltop forests. However, this global picture is very noisy at local scale likely because of the endogenous gap-phase forest dynamic processes. Forest canopy height has been predictively mapped across a pixel resolution going from 6 m to 384 m mimicking a low resolution case of 3 points·km − 2 . Results of canopy height mapping indicated that the error for spatial model with environment effects decrease from 8.7 m to 0.91 m, depending of the pixel resolution. Results suggest that, outside the calibration plots, the contribution of environment in shaping the global canopy height distribution is quite limited. This prevents accurate canopy height mapping based only on environmental information, and suggests that precise canopy height maps, for local management purposes, can only be obtained with direct LiDAR monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 724  
Permanent link to this record
 

 
Author Sullivan, M.J.P.; Talbot, J.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Begne, S.K.; Chave, J.; Cuni-Sanchez, A.; Hubau, W.; Lopez-Gonzalez, G.; Miles, L.; Monteagudo-Mendoza, A.; Sonké, B.; Sunderland, T.; Ter Steege, H.; White, L.J.T.; Affum-Baffoe, K.; Aiba, S.-I.; De Almeida, E.C.; De Oliveira, E.A.; Alvarez-Loayza, P.; Dávila, E.Á.; Andrade, A.; Aragão, L.E.O.C.; Ashton, P.; Aymard, G.A.; Baker, T.R.; Balinga, M.; Banin, L.F.; Baraloto, C.; Bastin, J.-F.; Berry, N.; Bogaert, J.; Bonal, D.; Bongers, F.; Brienen, R.; Camargo, J.L.C.; Cerón, C.; Moscoso, V.C.; Chezeaux, E.; Clark, C.J.; Pacheco, Á.C.; Comiskey, J.A.; Valverde, F.C.; Coronado, E.N.H.; Dargie, G.; Davies, S.J.; De Canniere, C.; Djuikouo, M.N.; Doucet, J.-L.; Erwin, T.L.; Espejo, J.S.; Ewango, C.E.N.; Fauset, S.; Feldpausch, T.R.; Herrera, R.; Gilpin, M.; Gloor, E.; Hall, J.S.; Harris, D.J.; Hart, T.B.; Kartawinata, K.; Kho, L.K.; Kitayama, K.; Laurance, S.G.W.; Laurance, W.F.; Leal, M.E.; Lovejoy, T.; Lovett, J.C.; Lukasu, F.M.; Makana, J.-R.; Malhi, Y.; Maracahipes, L.; Marimon, B.S.; Junior, B.H.M.; Marshall, A.R.; Morandi, P.S.; Mukendi, J.T.; Mukinzi, J.; Nilus, R.; Vargas, P.N.; Camacho, N.C.P.; Pardo, G.; Peña-Claros, M.; Petronelli, P.; Pickavance, G.C.; Poulsen, A.D.; Poulsen, J.R.; Primack, R.B.; Priyadi, H.; Quesada, C.A.; Reitsma, J.; Réjou-Méchain, M.; Restrepo, Z.; Rutishauser, E.; Salim, K.A.; Salomão, R.P.; Samsoedin, I.; Sheil, D.; Sierra, R.; Silveira, M.; Slik, J.W.F.; Steel, L.; Taedoumg, H.; Tan, S.; Terborgh, J.W.; Thomas, S.C.; Toledo, M.; Umunay, P.M.; Gamarra, L.V.; Vieira, I.C.G.; Vos, V.A.; Wang, O.; Willcock, S.; Zemagho, L. pdf  doi
openurl 
  Title Diversity and carbon storage across the tropical forest biome Type Journal Article
  Year 2017 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 7 Issue Pages 39102  
  Keywords  
  Abstract Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-Tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity. © The Author(s) 2017.  
  Address School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 725  
Permanent link to this record
 

 
Author Bompy, F.; Lequeue, G.; Imbert, D.; Dulormne, M. doi  openurl
  Title Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species Type Journal Article
  Year 2014 Publication Plant and Soil Abbreviated Journal Plant and Soil  
  Volume 380 Issue 1 Pages 399-413  
  Keywords Acclimation; Avicennia germinans; Hypersalinity; Laguncularia racemosa; Leaf gas exchange; Rhizophora mangle; Salt stress  
  Abstract Background: Micro-tidal wetlands are subject to strong seasonal variations of soil salinity that are likely to increase in amplitude according to climate model predictions for the Caribbean. Whereas the effects of constant salinity levels on the physiology of mangrove species have been widely tested, little is known about acclimation to fluctuations in salinity. Aims and methods: The aim of this experiment was to characterize the consequences of the rate of increase in salinity (slow versus fast) and salinity fluctuations over time versus constant salt level. Seedling mortality, growth, and leaf gas exchange of three mangrove species, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle were investigated in semicontrolled conditions at different salt levels (0, 685, 1025, and 1370 mM NaCl). Results: Slow salinity increase up to 685 mM induced acclimation, improving the salt tolerance of A. germinans and L. racemosa, but had no effect on R. mangle. During fluctuations between 0 and 685 mM, A. germinans and R. mangle were not affected by a salinity drop to zero, whereas L. racemosa took advantage of the brief freshwater episode as shown by the durable improvement of photosynthesis and biomass production. Conclusions: This study provides new insights into physiological resistance and acclimation to salt stress. We show that seasonal variations of salinity may affect mangrove seedlings' morphology and physiology as much as annual mean salinity. Moreover, more severe dry seasons due to climate change may impact tree stature and species composition in mangroves through higher mortality rates and physiological disturbance at the seedling stage. © 2014 Springer International Publishing Switzerland.  
  Address EA 926 DYNECAR, UFR des Sciences Exactes et Naturelles, Université des Antilles et de la Guyane, BP 592, 97 159 Pointe-à-Pitre cedex, Guadeloupe (F.W.I.), France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :7; Export Date: 7 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 726  
Permanent link to this record
 

 
Author Dulormne, M.; Musseau, O.; Muller, F.; Toribio, A.; Bâ, A. doi  openurl
  Title Effects of NaCl on growth, water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings Type Journal Article
  Year 2010 Publication Plant and Soil Abbreviated Journal Plant and Soil  
  Volume 327 Issue 1 Pages 23-34  
  Keywords Bradyrhizobium; Leaf water potential; Nodulation; Salt; Swamp forest  
  Abstract Pterocarpus officinalis (Fabaceae) dominates in the swamp forests of the Lesser Antilles, submitted to strong variations of soil salinity (30-445 mM). This study aimed to assess the effect of salinity on growth, nodulation, N2 fixation, water status and ions content in P. officinalis and to clarify the mechanisms involved. Seedlings inoculated or not with two strains from areas of contrasting salinity levels (< to 50 or 445 mM) were watered with 0, 171 and 342 mM solutions of NaCl in greenhouse conditions. Non-inoculated seedlings were tolerant to a salinity of 171 mM, with no significant effect on seedling biomass. Evapotranspiration per unit of leaf area (E/TLa) remained unchanged at 171 mM. Maintenance of a constant E/TLa and especially the control of ion transport to the upper parts of the plant could explain seedling salt tolerance up to intermediate salinity conditions (171 mM). The two strains have a 99.8% genetic identity in spite of differences in their original habitats, this explaining the similar response of the symbiosis to salinity. The higher salt sensitivity of inoculated seedlings was linked to the sensitivity of both Bradyrhizobium strains (reduction of free-living cells) and to that of the nodulation process (fewer nodules and inhibition of N2-fixation) to intermediate salinity. © Springer Science + Business Media B.V. 2009.  
  Address LSTM-UMR 113, Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, B.P. 592, 97159 Pointe-à-Pitre, Guadeloupe (F.W.I.), France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :12; Export Date: 7 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 727  
Permanent link to this record
 

 
Author Martos, F.; Dulormne, M.; Pailler, T.; Bonfante, P.; Faccio, A.; Fournel, J.; Dubois, M.-P.; Selosse, M.-A. doi  openurl
  Title Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids Type Journal Article
  Year 2009 Publication New Phytologist Abbreviated Journal New Phytologist  
  Volume 184 Issue 3 Pages 668-681  
  Keywords Mycoheterotrophy; Mycorrhizas; Orchids; Rainforests; Saprotrophic fungi; Stable isotopes  
  Abstract Mycoheterotrophic orchids have adapted to shaded forest understory by shifting to achlorophylly and receiving carbon from their mycorrhizal fungi. In temperate forests, they associate in a highly specific way with fungi forming ectomycorrhizas on nearby trees, and exploiting tree photosynthates. However, many rainforests lack ectomycorrhizal fungi, and there is evidence that some tropical Asiatic species associate with saprotrophic fungi. To investigate this in different geographic and phylogenetic contexts, we identified the mycorrhizal fungi supporting two tropical mycoheterotrophic orchids from Mascarene (Indian Ocean) and Caribbean islands. We tested their possible carbon sources by measuring natural nitrogen (15N) and carbon (13C) abundances. Saprotrophic basidiomycetes were found: Gastrodia similis associates with a wood-decaying Resinicium (Hymenochaetales); Wullschlaegelia aphylla associates with both litter-decaying Gymnopus and Mycena species, whose rhizomorphs link orchid roots to leaf litter. The 15N and 13C abundances make plausible food chains from dead wood to G. similis and from dead leaves to W. aphylla. We propose that temperature and moisture in rainforests, but not in most temperate forests, may favour sufficient saprotrophic activity to support development of mycoheterotrophs. By enlarging the spectrum of mycorrhizal fungi and the level of specificity in mycoheterotrophic orchids, this study provides new insights on orchid and mycorrhizal biology in the tropics. © 2009 New Phytologist.  
  Address Dipartimento di Biologia Vegetale dell'Università, Istituto per la Protezione Delle Piante – CNR, Viale Mattioli 25, I-10125 Torino, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :65; Export Date: 7 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 728  
Permanent link to this record
 

 
Author Goulamoussene, Y.; Bedeau, C.; Descroix, L.; Linguet, L.; Herault, B. pdf  url
doi  openurl
  Title Environmental control of natural gap size distribution in tropical forests Type Journal Article
  Year 2017 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 14 Issue 2 Pages 353-364  
  Keywords  
  Abstract Natural disturbances are the dominant form of forest regeneration and dynamics in unmanaged tropical forests. Monitoring the size distribution of treefall gaps is important to better understand and predict the carbon budget in response to land use and other global changes. In this study, we model the size frequency distribution of natural canopy gaps with a discrete power law distribution. We use a Bayesian framework to introduce and test, using Monte Carlo Markov chain and Kuo-Mallick algorithms, the effect of local physical environment on gap size distribution. We apply our methodological framework to an original light detecting and ranging dataset in which natural forest gaps were delineated over 30 000 ha of unmanaged forest. We highlight strong links between gap size distribution and environment, primarily hydrological conditions and topography, with large gaps being more frequent on floodplains and in wind-exposed areas. In the future, we plan to apply our methodological framework on a larger scale using satellite data. Additionally, although gap size distribution variation is clearly under environmental control, variation in gap size distribution in time should be tested against climate variability. © Author(s) 2017.  
  Address Cirad, UMR EcoFoG, AgroParisTech, CNRS, Inra, Univ Antilles, Univ Guyane, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 729  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Herault, B.; Fine, P.V.A.; Vedel, V.; Lupoli, R.; Mesones, I.; Baraloto, C. doi  openurl
  Title Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests Type Journal Article
  Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology  
  Volume 85 Issue 1 Pages 227-239  
  Keywords Amazon; Arthropod community; Environmental filtering; Forest habitat; French Guiana; Functional composition; Mass sampling; Peru; Trophic cascades  
  Abstract Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2016 British Ecological Society.  
  Address International Center for Tropical Botany, Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 17 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 731  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: