|   | 
Details
   web
Records
Author Vincent, G.; Weissenbacher, E.; Sabatier, D.; Blanc, L.; Proisy, C.; Couteron, P.
Title Detection des variations de structure de peuplements en foret dense tropicale humide par lidar aeroporte Type Journal Article
Year 2010 Publication Revue Francaise de Photogrammetrie et de Teledetection Abbreviated Journal Rev. Fr. Photogramm. Teledetect.
Volume 191 Issue Pages 42-51
Keywords Above-ground biomass estimation; Canopy height model; Stem diameter distribution; Tropical moist forest; Above ground biomass; Above ground level; Airborne LiDAR; Basal area; Canopy Height Models; Carbon stocks; Characterisation; Classical fields; Coefficient of variation; Diameter distributions; Digital terrain model; Flooded areas; Forest ecology; Forest structure; Forest type; High spatial resolution; Individual tree; LIDAR data; Light detection and ranging; Local statistics; Long term; Management issues; Natural forests; Natural variation; Pearson correlation coefficients; Quadratic mean diameter; Soil characteristics; Soil cover; Spatial changes; Spatial resolution; Stem density; Stem diameter; Stem height; Strong correlation; Tree height; Tropical moist forest; Tropical rain forest; Vegetation structure; Vertical accuracy; Water regime; Discriminant analysis; Ecology; Optical radar; Remote sensing; Soils; Statistics; Stem cells; Temperature control; Tropics; Vegetation; Forestry; Biomass; Discriminant Analysis; Ecology; Forest Canopy; Forestry; Radar; Remote Sensing; Stems; Temperature Control; Tropical Atmospheres
Abstract Characterisation of forest structure is a major stake for forestry, species conservation, carbon stock estimates and many forest ecology and management issues. At large scale natural forest structure tends to vary according to climate and geomorphomology (Paget, 1999; Steege et al., 2006) while soil characteristics (and notably water regime) and syMgenetic stage add some finer scale variation (Oldeman, 1989; Sabatier et al., 1997). Forest structure characterisation traditionally relies on field-based collection of individual tree dimensions such as stem diameter and stem height sampled across tracks of forest (Hall et al., 1998). However, such field intensive methods are costly, and of low accuracy regarding measures of tree heights. Airborne light detection and ranging (LiDAR) technology provides horizontal and vertical Information at high spatial resolutions and vertical accuracies (Lim et al., 2003; Hyyppä et al., 2004). It has the potential for gathering vegetation structure data over large areas rapidly at moderate cost and hence is of particular relevance for poorly sampled, difficult to access and largely unexplored tropical rainforests. In this study we examined the ability of airborne LiDAR to detect spatial changes in the structure of dense tropical rain forest and we probed this remote sensing approach against local statistics derived from stem diameters (i.e. classical field data information) mapped across a large track of forest at a long term experimental site in French Guyana. The large variability in forest structure occurring at the experimental site is du to natural variation of the soil cover (and notably drainage properties) combined with various logging intensities applied 15 years before the LiDAR data were acquired. On this basis ten different forest types were identified at the site (figure 1 and 3). Various stem based statistics were computed for a series of meshes with cells ranging from 30 by 30 m plots to 250 by 250 m plots. These statistics included basal area, stem density, quadratic mean diameter, and diameter distribution percentiles. Similarly local statistics were extracted either from the Canopy Height Model (e.g. median height, mean height, standard height deviation, height coefficient of variation, height percentiles, frequency of hits below 5 m above ground level). Additionally a wetness index (Böhner et al., 2002) was computed at each node of a 5 by 5 m grid from the Digital Terrain Model also extracted from the LiDAR data set. We used both types of cell statistics to discriminate the various forest types. Comparison between the two approaches for a range of spatial resolution is available from in table 1. Results indicate that LiDAR based statistics are essentially as powerful as field based statistics to discriminate forest types at coarse scale. This reflects the very strong correlation between the CHM and the field based stem diameter data. For example (figure 5) the Pearson correlation coefficient between median height and quadratic mean diameter for cells of 125 by 125 m is 0.945 (n=0.72). When a finer resolution is required however as for the detection of seasonally flooded bottomland forest along thalwegs, then LiDAR technology proves more efficient than field based inventories as it combines information from the DTM and the CHM. The wetness index alone correctly retrieves about 2 thirds of the seasonally flooded areas. All in all, discriminant analysis performance of the LiDAR derived information approaches 80% when classifying forests cover at the finest scale of 5 by 5m into 10 different types and reaches 87% when a coarser classification Into 6 forest types is considered (figure 4).
Address IRD, UMR AMAP, Montpellier, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17689791 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 1; Export Date: 21 October 2011; Source: Scopus; Language of Original Document: French; Correspondence Address: Vincent, G.; IRD, UMR AMAP, Kourou – BP 701 (CIRAD) 97387 Kourou cedex -Guyane, France Approved no
Call Number EcoFoG @ webmaster @ Serial 351
Permanent link to this record
 

 
Author Dejean, A.; Azémar, F.; Roux, O.
Title An invasive ant species able to counterattack marabunta raids Type Journal Article
Year 2014 Publication Comptes Rendus Biologies Abbreviated Journal C. R. Biol.
Volume 337 Issue 7-8 Pages 475-479
Keywords Antipredation; Army ants; Colony mate recognition; Eciton; Pheidole; aggression; ant; article; bioassay; Eciton burchellii; Eciton hamatum; emulsion; insect society; mass fragmentography; Neotropics; nonhuman; Pheidole megacephala
Abstract In the Neotropics where it was introduced, the invasive ant Pheidole megacephala counterattacked raids by the army ants Eciton burchellii or E. hamatum. The Eciton workers that returned to their bivouac were attacked and spread-eagled and most of them killed by their outgoing colony mates. Little by little the zone where returning and outgoing Eciton workers encountered one another moved away from the Pheidole nest which was no longer attacked, so that most of the colony was spared. Using a water-based technique rounded out by bioassays, we show that Pheidole compounds were transferred onto the Eciton cuticle during the counterattacks, so that outgoing workers do not recognize returning colony mates, likely perceived as potential prey. Because P. megacephala is an introduced African species, this kind of protection, which cannot be the result of coevolutive processes, corresponds to a kind of by-product due to its aggressiveness during colony defence. © 2014 Académie des sciences.
Address IRD, MIVEGEC (IRD 224 CNRS 5290-UM1-UM2) Équipe BEES, 911, avenue Agropolis, 34394 Montpellier cedex 5, France
Corporate Author Thesis
Publisher Elsevier Masson SAS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17683238 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2014; Coden: Crboc; Correspondence Address: Dejean, A.; CNRS UMR 8172, Écologie des Forêts de Guyane, BP 316, 97379 Kourou cedex, France; email: alain.dejean@wanadoo.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 557
Permanent link to this record
 

 
Author Woolfit, M.; Iturbe-Ormaetxe, I.; Brownlie, J.C.; Walker, T.; Riegler, M.; Seleznev, A.; Popovici, J.; Rancès, E.; Wee, B.A.; Pavlides, J.; Sullivan, M.J.; Beatson, S.A.; Lane, A.; Sidhu, M.; McMeniman, C.J.; McGraw, E.A.; O'Neill, S.L.
Title Genomic evolution of the pathogenic Wolbachia strain, wMelPop Type Journal Article
Year 2013 Publication Genome Biology and Evolution Abbreviated Journal Genome Biolog. Evol.
Volume 5 Issue 11 Pages 2189-2204
Keywords Endosymbiont; Evolution; Genomics; Wolbachia
Abstract Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequentialderivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedesaegypti mosquitoes, creating wMelPop-PGYP,which wassequenced after 4yearsin the insecthost. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Address Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17596653 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 9 February 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: O'Neill, S.L.; School of Biological Sciences, Monash University, Clayton, VIC, Australia; email: scott.oneill@monash.edu; Funding Details: NIH, National Institutes of Health Approved no
Call Number EcoFoG @ webmaster @ Serial 527
Permanent link to this record
 

 
Author Levionnois, S.; Coste, S.; Nicolini, E.; Stahl, C.; Morel, H.; Heuret, P.
Title Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae) Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume 40 Issue 2 Pages 245-258
Keywords allometry; leaf size; petiole anatomy; scaling; theoretical hydraulic conductivity; vessel widening; xylem
Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permission@oup.com.
Address UMR AMAP, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, 34398, France
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 921
Permanent link to this record
 

 
Author Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J.
Title Traits controlling shade tolerance in tropical montane trees Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume 40 Issue 2 Pages 183-197
Keywords biomass allocation; leaf temperature; plant traits; Rwanda; shade intolerance; shade tolerance; tropical montane forest; article; biomass allocation; breathing; canopy; carbon balance; compensation; photosynthesis; plant leaf; plant stem; rain forest; Rwanda; shade tolerance; species difference; sweating
Abstract Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation. © The Author(s) 2019. Published by Oxford University Press.
Address Rwanda Agriculture and Animal Resources Development, PO Box 5016Kigali, Rwanda
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 922
Permanent link to this record
 

 
Author Lehours, A.-C.; Jeune, A.-H.L.; Aguer, J.-P.; Céréghino, R.; Corbara, B.; Kéraval, B.; Leroy, C.; Perrière, F.; Jeanthon, C.; Carrias, J.-F.
Title Unexpectedly high bacteriochlorophyll a concentrations in neotropical tank bromeliads Type Journal Article
Year 2016 Publication Environmental Microbiology Reports Abbreviated Journal Environmental Microbiology Reports
Volume 8 Issue 5 Pages 689-698
Keywords
Abstract The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1758-2229 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 709
Permanent link to this record
 

 
Author Malé, P.-J.G.; Bardon, L.; Besnard, G.; Coissac, E.; Delsuc, F.; Engel, J.; Lhuillier, E.; Scotti-Saintagne, C.; Tinaut, A.; Chave, J.
Title Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family Type Journal Article
Year 2014 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.
Volume 14 Issue 5 Pages 966-975
Keywords Next-generation sequencing; Organellar genome; Phylogenomics; Tropical trees
Abstract Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups. © 2014 John Wiley & Sons Ltd.
Address GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, F-31326, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17550998 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2014; Correspondence Address: Malé, P.-J.G.; UMR 5174 Laboratoire Évolution and Diversité Biologique, CNRS, Université Paul Sabatier, ENFA, 118 route de Narbonne, Toulouse, F-31062, France; email: pjg.male@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 559
Permanent link to this record
 

 
Author Arranz, S.E.; Avarre, J.-C.; Balasundaram, C.; Bouza, C.; Calcaterra, N.B.; Cezilly, F.; Chen, S.-L.; Cipriani, G.; Cruz, V.P.; D'Esposito, D.; Daniel, C.; Dejean, A.; Dharaneedharan, S.; Díaz, J.; Du, M.; Durand, J.-D.; Dziadek, J.; Foresti, F.; Peng-Cheng, F.; Gao, Q.-B.; García, G.; Gauffre-Autelin, P.; Giovino, A.; Goswami, M.; Guarino, C.; Guerra-Varela, J.; Gutiérrez, V.; Harris, D.J.; Heo, M.-S.; Khan, G.; Kim, M.; Lakra, W.S.; Lauth, J.; Leclercq, P.; Lee, J.; Lee, S.-H.; Lee, S.; Lee, T.; Li, Y.-H.; Liu, H.; Liu, S.; Malé, P.-J.G.; Mandhan, R.P.; Martinez, P.; Mayer, V.E.; Mendel, J.; Mendes, N.J.; Mendonça, F.F.; Minias, A.; Minias, P.; Oh, K.-S.; Oliveira, C.; Orivel, J.; Orsini, L.; Pardo, B.G.; Perera, A.; Procaccini, G.; Rato, C.; Ríos, N.; Scibetta, S.; Sharma, B.S.; Sierens, T.; Singh, A.; Terer, T.; Triest, L.; Urbánková, S.; Vera, M.; Villanova, G.V.; Voglmayr, H.; Vyskočilová, M.; Wang, H.; Wang, J.-L.; Wattier, R.A.; Xing, R.; Yadav, K.; Yin, G.; Yuan, Y.; Yun, J.-C.; Zhang, F.-Q.; Zhang, J.-H.; Zhuang, Z.
Title Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012-31 January 2013 Type Journal Article
Year 2013 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.
Volume 13 Issue 3 Pages 546-549
Keywords
Abstract This article documents the addition of 268 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alburnoides bipunctatus, Chamaerops humilis, Chlidonias hybrida, Cyperus papyrus, Fusarium graminearum, Loxigilla barbadensis, Macrobrachium rosenbergii, Odontesthes bonariensis, Pelteobagrus vachelli, Posidonia oceanica, Potamotrygon motoro, Rhamdia quelen, Sarotherodon melanotheron heudelotii, Sibiraea angustata, Takifugu rubripes, Tarentola mauritanica, Trimmatostroma sp. and Wallago attu. These loci were cross-tested on the following species: Alburnoides fasciatus, Alburnoides kubanicus, Alburnoides maculatus, Alburnoides ohridanus, Alburnoides prespensis, Alburnoides rossicus, Alburnoides strymonicus, Alburnoides thessalicus, Alburnoides tzanevi, Carassius carassius, Fusarium asiaticum, Leucaspius delineatus, Loxigilla noctis dominica, Pelecus cultratus, Phoenix canariensis, Potamotrygon falkneri, Trachycarpus fortune and Vimba vimba. © 2013 Blackwell Publishing Ltd.
Address Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1755098x (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 2 May 2013; Source: Scopus; :doi 10.1111/1755-0998.12095; Language of Original Document: English; Correspondence Address: Arranz, S.E.; Molecular Ecology Resources Editorial Office, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada; email: editorial.office@molecol.com Approved no
Call Number EcoFoG @ webmaster @ Serial 484
Permanent link to this record
 

 
Author Sommeria-Klein, G.; Zinger, L.; Coissac, E.; Iribar, A.; Schimann, H.; Taberlet, P.; Chave, J.
Title Latent Dirichlet Allocation reveals spatial and taxonomic structure in a DNA-based census of soil biodiversity from a tropical forest Type Journal Article
Year 2020 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.
Volume 20 Issue 2 Pages 371-386
Keywords community ecology; environmental DNA; metabarcoding; OTU presence–absence; soil microbiome; topic modelling; bacterium; biodiversity; biology; classification; eukaryote; fungus; genetics; high throughput sequencing; isolation and purification; microbiology; parasitology; procedures; soil; Bacteria; Biodiversity; Computational Biology; Eukaryota; Fungi; High-Throughput Nucleotide Sequencing; Soil; Soil Microbiology
Abstract High-throughput sequencing of amplicons from environmental DNA samples permits rapid, standardized and comprehensive biodiversity assessments. However, retrieving and interpreting the structure of such data sets requires efficient methods for dimensionality reduction. Latent Dirichlet Allocation (LDA) can be used to decompose environmental DNA samples into overlapping assemblages of co-occurring taxa. It is a flexible model-based method adapted to uneven sample sizes and to large and sparse data sets. Here, we compare LDA performance on abundance and occurrence data, and we quantify the robustness of the LDA decomposition by measuring its stability with respect to the algorithm's initialization. We then apply LDA to a survey of 1,131 soil DNA samples that were collected in a 12-ha plot of primary tropical forest and amplified using standard primers for bacteria, protists, fungi and metazoans. The analysis reveals that bacteria, protists and fungi exhibit a strong spatial structure, which matches the topographical features of the plot, while metazoans do not, confirming that microbial diversity is primarily controlled by environmental variation at the studied scale. We conclude that LDA is a sensitive, robust and computationally efficient method to detect and interpret the structure of large DNA-based biodiversity data sets. We finally discuss the possible future applications of this approach for the study of biodiversity. © 2019 John Wiley & Sons Ltd
Address Laboratoire d’Ecologie des Forêts de Guyane (EcoFoG, UMR 745), INRA, AgroParisTech, CIRAD, CNRS, University of the French West Indies, University of French Guiana, Kourou, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1755098x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 981
Permanent link to this record
 

 
Author Birer, C.; Tysklind, N.; Zinger, L.; Duplais, C.
Title Comparative analysis of DNA extraction methods to study the body surface microbiota of insects: A case study with ant cuticular bacteria Type Journal Article
Year 2017 Publication Molecular Ecology Resources Abbreviated Journal Mol Ecol Resour
Volume 17 Issue 6 Pages e34-e45
Keywords 16S rRNA; bacterial communities; cuticular microbiome; insect cuticle; metabarcoding
Abstract High-throughput sequencing of the 16S rRNA gene has considerably helped revealing the essential role of bacteria living on insect cuticles in the ecophysiology and behaviour of their hosts. However, our understanding of host-cuticular microbiota feedbacks remains hampered by the difficulties of working with low bacterial DNA quantities as with individual insect cuticle samples, which are more prone to molecular biases and contaminations. Herein, we conducted a methodological benchmark on the cuticular bacterial loads retrieved from two Neotropical ant species of different body size and ecology: Atta cephalotes (~15 mm) and Pseudomyrmex penetrator (~5 mm). We evaluated the richness and composition of the cuticular microbiota, as well as the amount of biases and contamination produced by four DNA extraction protocols. We also addressed how bacterial community characteristics would be affected by the number of individuals or individual body size used for DNA extraction. Most extraction methods yielded similar results in terms of bacterial diversity and composition for A. cephalotes (~15 mm). In contrast, greater amounts of artefactual sequences and contaminations, as well as noticeable differences in bacterial community characteristics were observed between extraction methods for P. penetrator (~5 mm). We also found that large (~15 mm) and small (~5 mm) A. cephalotes individuals harbour different bacterial communities. Our benchmark suggests that cuticular microbiota of single individual insects can be reliably retrieved provided that blank controls, appropriate data cleaning, and individual body size and functional role within insect society are considered in the experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1755-0998 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 781
Permanent link to this record