|   | 
Details
   web
Records
Author Dezecache, C.; Salles, J.-M.; Herault, B.
Title Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries Type Journal Article
Year 2018 Publication Carbon Balance Manage. Abbreviated Journal
Volume 13 Issue 21 Pages
Keywords Baseline; Deforestation; Guiana Shield; HFLD countries; Redd+; Reference level; Spatial modelling
Abstract Background: REDD+ is being questioned by the particular status of High Forest/Low Deforestation countries. Indeed, the formulation of reference levels is made difficult by the confrontation of low historical deforestation records with the forest transition theory on the one hand. On the other hand, those countries might formulate incredibly high deforestation scenarios to ensure large payments even in case of inaction. Results: Using a wide range of scenarios within the Guiana Shield, from methods involving basic assumptions made from past deforestation, to explicit modelling of deforestation using relevant socio-economic variables at the regional scale, we show that the most common methodologies predict huge increases in deforestation, unlikely to happen given the existing socio-economic situation. More importantly, it is unlikely that funds provided under most of these scenarios could compensate for the total cost of avoided deforestation in the region, including social and economic costs. Conclusion: This study suggests that a useful and efficient international mechanism should really focus on removing the underlying political and socio-economic forces of deforestation rather than on hypothetical result-based payments estimated from very questionable reference levels.
Address
Corporate Author Thesis
Publisher BioMed Central Ltd. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17500680 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 837
Permanent link to this record
 

 
Author Dezecache, Camille; Faure, Emmanuel; Gond, Valéry; Salles, Jean-Michel; Vieilledent, Ghislain; Herault, Bruno
Title Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation Type Journal Article
Year 2017 Publication Environmental Research Letters Abbreviated Journal
Volume 12 Issue 3 Pages 034013
Keywords
Abstract Tropical forests of the Guiana Shield are the most affected by gold-mining in South America, experiencing an exponential increase in deforestation since the early 2000’s. Using yearly deforestation data encompassing Guyana, Suriname, French Guiana and the Brazilian State of Amapá, we demonstrated a strong relationship between deforestation due to gold-mining and gold-prices at the regional scale. In order to assess additional drivers of deforestation due to gold-mining, we focused on the national scale and highlighted the heterogeneity of the response to gold-prices under different political contexts. Deforestation due to gold-mining over the Guiana Shield occurs mainly in Guyana and Suriname. On the contrary, past and current repressive policies in Amapá and French Guiana likely contribute to the decorrelation of deforestation and gold prices. In this work, we finally present a case study focusing on French Guiana and Suriname, two neighbouring countries with very different levels of law enforcement against illegal gold-mining. We developed a modelling framework to estimate potential deforestation leakages from French Guiana to Suriname in the border areas. Based on our assumptions, we estimated a decrease in deforestation due to gold-mining of approx. 4300 hectares in French Guiana and an increase of approx. 12 100 hectares in Suriname in response to the active military repression of illegal gold-mining launched in French Guiana. Gold-mining in the Guiana Shield provides challenging questions regarding REDD+ implementation. These questions are discussed at the end of this study and are important to policy makers who need to provide sustainable alternative employment to local populations in order to ensure the effectiveness of environmental policies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-9326 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 738
Permanent link to this record
 

 
Author Piponiot, C.; Rödig, E.; Putz, F.E.; Rutishauser, E.; Sist, P.; Ascarrunz, N.; Blanc, L.; Derroire, G.; Descroix, L.; Guedes, M.C.; Coronado, E.H.; Huth, A.; Kanashiro, M.; Licona, J.C.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Shenkin, A.; de Souza, C.R.; Vidal, E.; West, T.A.P.; Wortel, V.; Herault, B.
Title Can timber provision from Amazonian production forests be sustainable? Type Journal Article
Year 2019 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters
Volume 14 Issue 6 Pages 064014
Keywords
Abstract Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth’s most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests’ fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-9326 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 875
Permanent link to this record
 

 
Author Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Ruschel, A.R.; Souza, C.R. de; Vidal, E.; Wortel, V.; Hérault, B.
Title Optimal strategies for ecosystem services provision in Amazonian production forests Type Journal Article
Year 2019 Publication Environmental Research Letters Abbreviated Journal
Volume 14 Issue 12 Pages 124090
Keywords
Abstract Although tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting high-intensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and trans-boundary forest management.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-9326 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 910
Permanent link to this record
 

 
Author Petillon, J.; Montaigne, W.; Renault, D.
Title Hypoxic coma as a strategy to survive inundation in a salt-marsh inhabiting spider Type Journal Article
Year 2009 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 5 Issue 4 Pages 442-445
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1744-9561 ISBN Medium
Area Expedition Conference
Notes WOS:000267881700002 Approved no
Call Number EcoFoG @ webmaster @ Serial 288
Permanent link to this record
 

 
Author Ruiz-Gonzalez, M.X.; Male, P.J.G.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Quilichini, A.; Orivel, J.
Title Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants Type Journal Article
Year 2011 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 7 Issue 3 Pages 475-479
Keywords ant-fungus association; Cordia nodosa; Chaetothyriales; Hirtella physophora; myrmecophyte; population structure
Abstract Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.
Address [Leroy, Celine; Dejean, Alain; Quilichini, Angelique; Orivel, Jerome] CNRS, UMR Ecol Forets Guyane 8172, F-97379 Kourou, France, Email: jerome.orivel@ecofog.gf
Corporate Author Thesis
Publisher Royal Soc Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1744-9561 ISBN Medium
Area Expedition Conference
Notes ISI:000290515100044 Approved no
Call Number EcoFoG @ webmaster @ Serial 317
Permanent link to this record
 

 
Author Biwolé, A.B.; Dainou, K.; Fayolle, A.; Hardy, O.J.; Brostaux, Y.; Coste, S.; Delion, S.; Betti, J.L.; Doucet, J.-L.
Title Light Response of Seedlings of a Central African Timber Tree Species, Lophira alata (Ochnaceae), and the Definition of Light Requirements Type Journal Article
Year 2015 Publication Biotropica Abbreviated Journal Biotropica
Volume 47 Issue 6 Pages 681-688
Keywords biomass allocation; Central Africa; light requirement: Lophira alata; population; relative growth rate; seedling growth; timber species; Afrique centrale; allocation de biomasse; besoins en lumière; croissance des semis; bois d'œuvre; Lophira alata; population; taux de croissance relatif
Abstract Light is of primary importance in structuring tropical tree communities. Light exposure at seedling and adult stages has been used to characterize the ecological profile of tropical trees, with many implications in forest management and restoration ecology. Most shade-tolerance classification systems have been proposed based on empirical observations in a specific area and thus result in contradictions among categories assigned to a given species. In this study, we aimed to quantify the light requirements for seedling growth of a Central African timber tree, Lophira alata (Ochnaceae), taking into account effects of population origin. In two controlled experiments: a light response experiment and a comparative population experiment, conducted in southwestern Cameroon, using seeds collected from four populations (three from Cameroon and one from Gabon), we examined the quantitative responses to irradiance of seedlings. After 2 years, mortality was very low (<3%), even in extremely low irradiance. Growth and biomass allocation patterns varied in response to light, with intermediate irradiance (24–43%) providing optimal conditions. Light response differed between populations. The Boumba population in the northeastern edge of the species' distribution exhibited the highest light requirements, suggesting a local adaptation. As a result of positive growth at low irradiance and maximum growth at intermediate irradiance, we concluded that L. alata exhibits characteristics of both non-pioneer and pioneer species. Implications of our results to propose an objective way to assign the light requirement for tropical tree species are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1744-7429 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 648
Permanent link to this record
 

 
Author Rutishauser, E.; Herault, B.; Petronelli, P.; Sist, P.
Title Tree Height Reduction After Selective Logging in a Tropical Forest Type Journal Article
Year 2016 Publication Biotropica Abbreviated Journal Biotropica
Volume 48 Issue 3 Pages 285-289
Keywords carbon sequestration; forest management; logging; tropical forests; wood production
Abstract By harvesting scattered large trees, selective logging increases light availability and thereby stimulates growth and crown expansion at early-life stage among remnant trees. We assessed the effects of logging on total and merchantable bole (i.e., lowest branch at crown base) heights on 952 tropical canopy trees in French Guiana. We observed reductions in both total (mean, −2.3 m) and bole (mean, −2.0 m) heights more than a decade after selective logging. Depending on local logging intensity, height reductions resulted in 2–13 percent decreases in aboveground tree biomass and 3–17 percent decreases in bole volume. These results highlight the adverse effects of logging at both tree and stand levels. This decrease in height is a further threat to future provision of key environmental services, such as timber production and carbon sequestration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1744-7429 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 723
Permanent link to this record
 

 
Author Molto, Q.; Herault, B.; Boreux, J.-J.; Daullet, M.; Rousteau, A.; Rossi, V.
Title Predicting tree heights for biomass estimates in tropical forests -A test from French Guiana Type Journal Article
Year 2014 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 11 Issue 12 Pages 3121-3130
Keywords
Abstract The recent development of REDD+ mechanisms requires reliable estimation of carbon stocks, especially in tropical forests that are particularly threatened by global changes. Even though tree height is a crucial variable for computing aboveground forest biomass (AGB), it is rarely measured in large-scale forest censuses because it requires extra effort. Therefore, tree height has to be predicted with height models. The height and diameter of all trees over 10 cm in diameter were measured in 33 half-hectare plots and 9 one-hectare plots throughout northern French Guiana, an area with substantial climate and environmental gradients. We compared four different model shapes and found that the Michaelis-Menten shape was most appropriate for the tree biomass prediction. Model parameter values were significantly different from one forest plot to another, and this leads to large errors in biomass estimates. Variables from the forest stand structure explained a sufficient part of plot-to-plot variations of the height model parameters to improve the quality of the AGB predictions. In the forest stands dominated by small trees, the trees were found to have rapid height growth for small diameters. In forest stands dominated by larger trees, the trees were found to have the greatest heights for large diameters. The aboveground biomass estimation uncertainty of the forest plots was reduced by the use of the forest structure-based height model. It demonstrated the feasibility and the importance of height modeling in tropical forests for carbon mapping. When the tree heights are not measured in an inventory, they can be predicted with a height-diameter model and incorporating forest structure descriptors may improve the predictions. © Author(s) 2014. CC Attribution 3.0 License.
Address Université de Liège, Liège, Belgium
Corporate Author Thesis
Publisher European Geosciences Union Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17264189 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 3 July 2014; Correspondence Address: Molto, Q.; Université des Antilles et de la Guyane, UMR Ecologie des Forêts de Guyane, Kourou, France; email: quentin.molto@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 550
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Stahl, C.; Bonal, D.; Herault, B.
Title Asynchronism in leaf and wood production in tropical forests: A study combining satellite and ground-based measurements Type Journal Article
Year 2013 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 10 Issue 11 Pages 7307-7321
Keywords
Abstract The fixation of carbon in tropical forests mainly occurs through the production of wood and leaves, both being the principal components of net primary production. Currently field and satellite observations are independently used to describe the forest carbon cycle, but the link between satellite-derived forest phenology and field-derived forest productivity remains opaque. We used a unique combination of a MODIS enhanced vegetation index (EVI) dataset, a wood production model based on climate data and direct litterfall observations at an intra-annual timescale in order to question the synchronism of leaf and wood production in tropical forests. Even though leaf and wood biomass fluxes had the same range (respectively 2.4 ± 1.4 and 2.2 ± 0.4 Mg C ha-1 yr-1), they occurred separately in time. EVI increased with leaf renewal at the beginning of the dry season, when solar irradiance was at its maximum. At this time, wood production stopped. At the onset of the rainy season, when new leaves were fully mature and water available again, wood production quickly increased to reach its maximum in less than a month, reflecting a change in carbon allocation from short-lived pools (leaves) to long-lived pools (wood). The time lag between peaks of EVI and wood production (109 days) revealed a substantial decoupling between the leaf renewal assumed to be driven by irradiance and the water-driven wood production. Our work is a first attempt to link EVI data, wood production and leaf phenology at a seasonal timescale in a tropical evergreen rainforest and pave the way to develop more sophisticated global carbon cycle models in tropical forests. © 2013 Author(s).
Address INRA, UMR EEF 1137, 54280 Champenoux, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 17264170 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 2 December 2013; Source: Scopus; doi: 10.5194/bg-10-7307-2013; Language of Original Document: English; Correspondence Address: Wagner, F.; CIRAD, UMR Ecologie des Forêts de Guyane, Kourou, French Guiana, French Guiana; email: wagner.h.fabien@gmail.com; References: Allen, R., Smith, M., Pereira, L., Perrier, A., An update for the calculation of reference evapotranspiration (1994) Journal of the ICID, 43, pp. 35-92; Anderson, L.O., Biome-scale forest properties in Amazonia based on field and satellite observations (2012) Remote Sens., 4, pp. 1245-1271. , doi:10.3390/rs4051245; Arias, P.A., Fu, R., Hoyos, C.D., Li, W., Zhou, L., Changes in cloudiness over the Amazon rainforests during the last two decades: Diagnostic and potential causes (2011) Clim. Dynam., 37, pp. 1151-1164. , doi:10.1007/s00382-010-0903-2; Asner, G., Townsend, A., Braswell, B., Satellite observation of El Nino effects on Amazon forest phenology and productivity (2000) Geophys. Res. Lett., 27, pp. 981-984. , doi:10.1029/1999GL011113; Asner, G.P., Nepstad, D., Cardinot, G., Ray, D., Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (16), pp. 6039-6044. , DOI 10.1073/pnas.0400168101; Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Houghton, R.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps (2012) Nat. Clim. Change, 2, pp. 182-185. , doi:10.1038/NCLIMATE1354; Baker, T.R., Burslem, D.F.R.P., Swaine, M.D., Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest (2003) Journal of Tropical Ecology, 19 (2), pp. 109-125. , DOI 10.1017/S0266467403003146; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Herault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecol. Lett., 13, pp. 1338-1347. , doi:10.1111/j.1461- 0248.2010.01517.x; Barnett, A., Dobson, A., (2010) Analysing Seasonal Health Data, , Springer; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B.T., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14 (8), pp. 1917-1933. , DOI 10.1111/j.1365-2486.2008.01610.x; Bradley, A.V., Gerard, F.F., Barbier, N., Weedon, G.P., Anderson, L.O., Huntingford, C., Aragao, L.E.O.C., Arai, E., Relationships between phenology, radiation and precipitation in the Amazon region (2011) Glob. Change Biol., 17, pp. 2245-2260. , doi:10.1111/j.1365-2486.2011.02405.x; Brando, P.M., Goetz, S.J., Baccini, A., Nepstad, D.C., Beck, P.S.A., Christman, M.C., Seasonal and interannual variability of climate and vegetation indices across the Amazon (2010) P. Natl. Acad. Sci. USA, 107, pp. 14685-14690. , doi:10.1073/pnas.0908741107; Caldararu, S., Palmer, P.I., Purves, D.W., Inferring Amazon leaf demography from satellite observations of leaf area index (2012) Biogeosciences, 9, pp. 1389-1404. , doi:10.5194/bg-9-1389-2012; Chambers, J.Q., Silver, W.L., Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 463-476. , DOI 10.1098/rstb.2003.1424; Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L.E.O.C., Bonal, D., Châtelet, P., Malhi, Y., Regional and seasonal patterns of litterfall in tropical South America (2010) Biogeosciences, 7, pp. 43-55. , doi:10.5194/bg-7-43-2010; Clark, D.B., Clark, D.A., Oberbauer, S.F., Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2 (2010) Glob. Change Biol., 16, pp. 747-759. , doi:10.1111/j.1365-2486.2009.02004.x; Delegido, J., Vergara, C., Verrelst, J., Gandia, S., Moreno, J., Remote estimation of crop chlorophyll content by means of highspectral- resolution reflectance techniques (2011) Agron. J., 103, pp. 1834-1842. , doi:10.2134/agronj2011.0101; De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., Ciais, P., Steppe, K., Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model (2012) Geosci. Model Dev., 5, pp. 1091-1108. , doi:10.5194/gmd-5-1091-2012; Doughty, C.E., An in situ leaf and branch warming experiment in the amazon (2011) Biotropica, 43, pp. 658-665. , doi:10.1111/j.1744- 7429.2010.00746.x; Doughty, C.E., Goulden, M.L., Are tropical forests near a high temperature threshold? (2008) J. Geophys. Res.-Biogeo., 113, pp. G00B07. , doi:10.1029/2007JG000632; Ekstrom, M., Jones, P.D., Fowler, H.J., Lenderink, G., Buishand, T.A., Conway, D., Regional climate model data used within the SWURVE project projected changes in seasonal patterns and estimation of PET (2007) Hydrology and Earth System Sciences, 11 (3), pp. 1069-1083; Enquist, B.J., Leffler, A.J., Long-term tree ring chronologies from sympatric tropical dry-forest trees: Individualistic responses to climatic variation (2001) Journal of Tropical Ecology, 17 (1), pp. 41-60. , DOI 10.1017/S0266467401001031; (2008) ESA SP-1313/4 Candidate Earth Explorer Core Missions – Reports for Assessment: FLEX – FLuorescence Explorer, , http://esamultimedia.esa.int/docs/SP1313-4_FLEX.pdf, European Space Agency, Tech. rep., published by ESA Communication Production Office, Noordwijk, The Netherlands; Fichtler, E., Clark, D.A., Worbes, M., Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C (2003) Biotropica, 35 (3), pp. 306-317; Figueira, A., Miller, S., De Sousa, C., Menton, M., Maia, A., Da Rocha, H., Goulden, M., (2011) LBA-ECO CD-04 Dendrometry, Km 83 Tower Site, , http://daac.ornl.gov, Tapajos National Forest, Brazil, Data set, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, doi:10.3334/ORNLDAAC/989; Galvao, L.S., Breunig, F.M., Dos Santos, J.R., De Moura, Y.M., View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest (2013) Int. J. Appl. Earth Obs., 21, pp. 291-300. , doi:10.1016/j.jag.2012.07.005; Gao, X., Huete, A.R., Ni, W., Miura, T., Optical-biophysical relationships of vegetation spectra without background contamination (2000) Remote Sensing of Environment, 74 (3), pp. 609-620. , DOI 10.1016/S0034-4257(00)00150-4, PII S0034425700001504; Gond, V., Freycon, V., Molino, J.-F., Brunaux, O., Ingrassia, F., Joubert, P., Pekel, J.-F., Sabatier, D., Broad-scale spatial pattern of forest landscape types in the Guiana Shield (2011) Int. J. Appl. Earth Obs., 13, pp. 357-367. , doi:10.1016/j.jag.2011.01.004; Gourlet-Fleury, S., Guehl, J.M., Laroussinie, O., (2004) Ecology and Management of A Neotropical Rainforest – Lessons Drawn from Paracou, A Long-term Experimental Research Site in French Guiana, , Elsevier; Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G., Wright, S.J., Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (2), pp. 572-576. , DOI 10.1073/pnas.0133045100; Grogan, J., Schulze, M., The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil (2012) Biotropica, 44, pp. 331-340. , doi:10.1111/j.1744-7429.2011.00825.x; Harris, P.P., Huntingford, C., Cox, P.M., Amazon Basin climate under global warming: The role of the sea surface temperature (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1753-1759. , DOI 10.1098/rstb.2007.0037, PII M322R63897015H77; Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sensing of Environment, 83 (1-2), pp. 195-213. , DOI 10.1016/S0034-4257(02)00096-2, PII S0034425702000962; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.Z., Myneni, R., Amazon rainforests green-up with sunlight in dry season (2006) Geophys. Res. Lett., 33, pp. L06405. , doi:10.1029/2005GL025583; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) Journal of Geophysical Research G: Biogeosciences, 112 (3), pp. G03008. , DOI 10.1029/2006JG000365; Janzen, D., Wilson, D., The cost of being dormant in the tropics (1974) Biotropica, 6, pp. 260-262; Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Barnsley, M.J., The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research (1998) IEEE Transactions on Geoscience and Remote Sensing, 36 (4), pp. 1228-1249. , PII S0196289298047512; Kozlowski, T., Carbohydrate sources and sinks in woody-plants (1992) Bot. Rev., 58, pp. 107-222. , doi:10.1007/BF02858600; Krepkowski, J., Bräuning, A., Gebrekirstos, A., Strobl, S., Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia (2011) Trees, 25, pp. 59-70. , doi:10.1007/s00468-010-0460-7; Lewis, S.L., Malhi, Y., Phillips, O.L., Fingerprinting the impacts of global change on tropical forests (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 437-462. , DOI 10.1098/rstb.2003.1432; Lisi, C.S., Tomazello Fo., M., Botosso, P.C., Roig, F.A., Maria, V.R.B., Ferreira-Fedele, L., Voigt, A.R.A., Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil (2008) IAWA Journal, 29 (2), pp. 189-207; Lloyd, J., Farquhar, G.D., Effects of rising temperatures and [CO2] on the physiology of tropical forest trees (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1811-1817. , DOI 10.1098/rstb.2007.0032, PII C14L2U757H282731; Da Costa Lola, A.C., Galbraith, D., Almeida, S., Tanaka Portela, B.T., Da Costa, M., De Athaydes Silva Jr., J., Braga, A.P., Meir, P., Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest (2010) New Phytol., 187, pp. 579-591. , doi:10.1111/j.1469-8137.2010.03309.x; Loubry, D., Phenology of deciduous trees in a French-Guianan forest (5 degrees latitude North) – Case of a determinism with endogenous and exogenous components (1994) Can. J. Bot., 72, pp. 1843-1857; Malhi, Y., Grace, J., Tropical forests and atmospheric carbon dioxide (2000) Trends in Ecology and Evolution, 15 (8), pp. 332-337. , DOI 10.1016/S0169-5347(00)01906-6, PII S0169534700019066; Malhi, Y., Aragao, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., Meir, P., Exploring the likelihood and mechanism of a climatechange- induced dieback of the Amazon rainforest (2009) P. Natl. Acad. Sci. USA, 106, pp. 20610-20615. , doi:10.1073/pnas.0804619106; Malhi, Y., Doughty, C., Galbraith, D., The allocation of ecosystem net primary productivity in tropical forests (2011) Philos. T. R. Soc. B, 366, pp. 3225-3245. , doi:10.1098/rstb.2011.0062; Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., Performance of spectral fitting methods for vegetation fluorescence quantification (2010) Remote Sens. Environ., 114, pp. 363-374. , doi:10.1016/j.rse.2009.09.010; Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and nonstructural carbohydrate dynamics (2012) Tree Physiol., 32, pp. 1033-1045. , doi:10.1093/treephys/tps052; Mitchell, T.D., Jones, P.D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids (2005) International Journal of Climatology, 25 (6), pp. 693-712. , DOI 10.1002/joc.1181; Molto, Q., Rossi, V., Blanc, L., Error propagation in biomass estimation in tropical forests (2013) Meth. Ecol. Evolut., 4, pp. 175-183. , doi:10.1111/j.2041-210x.2012.00266.x; Moura, Y.M., Galvao, L.S., Dos Santos, J.R., Roberts, D.A., Breunig, F.M., Use of MISR/Terra data to study intra- and interannual EVI variations in the dry season of tropical forest (2012) Remote Sens. Environ., 127, pp. 260-270. , doi:10.1016/j.rse.2012.09.013; Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., The meaning of spectral vegetation indices (1995) IEEE T. Geosci. Remote, 33, pp. 481-486; Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R., Dickinson, R.E., Knyazikhin, Y., Didan, K., Salomonson, V.V., Large seasonal swings in leaf area of Amazon rainforests (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (12), pp. 4820-4823. , DOI 10.1073/pnas.0611338104; Nath, C.D., Dattaraja, H.S., Suresh, H.S., Joshi, N.V., Sukumar, R., Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India (2006) Journal of Biosciences, 31 (5), pp. 651-669. , http://www.ias.ac.in/jbiosci/dec2006/651-669.pdf, DOI 10.1007/BF02708418; Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., Running, S.W., Climate-driven increases in global terrestrial net primary production from 1982 to 1999 (2003) Science, 300 (5625), pp. 1560-1563. , DOI 10.1126/science.1082750; Nepstad, D., Moutinho, P., Dias, M., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res.-Atmos., 107, p. 8085. , doi:10.1029/2001JD000360; O'Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest (2008) Biotropica, 40 (2), pp. 151-159. , DOI 10.1111/j.1744-7429.2007.00354.x; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333, pp. 988-993. , doi:10.1126/science.1201609; Pennec, A., Gond, V., Sabatier, D., Tropical forest phenology in French Guiana from MODIS time series (2011) Remote Sens. Lett., 2, pp. 337-345; Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon rainforest (2009) Science, 323, pp. 1344-1347. , doi:10.1126/science.1164033; Poorter, L., Kitajima, K., Carbohydrate storage and light requirements of tropical moist and dry forest tree species (2007) Ecology, 88 (4), pp. 1000-1011. , http://www.esajournals.org/pdfserv/i0012-9658-088-04-1000.pdf, DOI 10.1890/06-0984; Rice, A.H., Pyle, E.H., Saleska, S.R., Hutyra, L., Palace, M., Keller, M., De Camargo, P.B., Wofsy, S.C., Carbon balance and vegetation dynamics in an old-growth Amazonian forest (2004) Ecological Applications, 14 (4 SUPPL.), pp. S55-S71; Richardson, A.D., Carbone, M.S., Keenan, T.F., Czimczik, C.I., Hollinger, D.Y., Murakami, P., Schaberg, P.G., Xu, X., Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees (2013) New Phytol., 197, pp. 850-861. , doi:10.1111/nph.12042; Rocha, A.V., Tracking carbon within the trees (2013) New Phytol., 197, pp. 685-686. , doi:10.1111/nph.12095; Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., Blanc, L., Contrasting above-ground biomass balance in a neotropical rain forest (2010) J. Veg. Sci., 21, pp. 672-682. , doi:10.1111/j.1654-1103.2010.01175.x; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2013) Glob. Change Biol., , doi:10.1111/gcb.12375; Sabatier, D., Puig, H., Phénologie et saisonnalité de la floraison et de la fructification en forêt dense guyanaise (1986) Memoir. Mus. Natl. Hist. A-Zool., 132, pp. 173-184; Sabatier, D., Grimaldi, M., Prevost, M., Guillaume, J., Godron, M., Dosso, M., Curmi, P., The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest (1997) Plant Ecol., 131, pp. 81-108; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., Da Rocha, H.R., De Camargo, P.B., Silva, H., Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses (2003) Science, 302 (5650), pp. 1554-1557. , DOI 10.1126/science.1091165; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (5850), p. 612. , DOI 10.1126/science.1146663; Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., Nemani, R.R., Myneni, R.B., Amazon forests did not green-up during the 2005 drought (2010) Geophys. Res. Lett., 37, pp. L05401. , doi:10.1029/2009GL042154; Schongart, J., Piedade, M.T.F., Ludwigshausen, S., Horna, V., Worbes, M., Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests (2002) Journal of Tropical Ecology, 18 (4), pp. 581-597. , DOI 10.1017/S0266467402002389; Solano, R., Didan, K., Jacobson, A., Huete, A., (2010) Terrestrial Biophysics and Remote Sensing Lab – The University of Arizona, MODIS Vegetation Indices (MOD13) C5 User's Guide, Version 1.00; Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.H., Leroy Miller, J., Chen, Z., (2007) Climate Change 2007, the Fourth Assessment Report (AR4), Intergovernmental Panel on Climate Change; Solomon, S., Plattner, G.-K., Knutti, R., Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions (2009) P. Natl. Acad. Sci. USA, 106, pp. 1704-1709. , doi:10.1073/pnas.0812721106; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J. Trop. Ecol., 26, pp. 393-405. , doi:10.1017/S0266467410000155; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropica, 45, pp. 155-164; Tian, H., Melillo, J.M., Kicklighter, D.W., David McGuire, A., Helfrich III, J.V.K., Moore III, B., Vorosmarty, C.J., Effect of interannual climate variability on carbon storage in Amazonian ecosystems (1998) Nature, 396 (6712), pp. 664-667. , DOI 10.1038/25328; Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., Ciais, P., Seasonal patterns of CO2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model (2011) J. Geophys. Res.-Biogeo., 116, pp. G02018. , doi:10.1029/2010JG001544; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2010) Agr. Forest Meteorol., pp. 1202-1213. , doi:10.1016/j.agrformet.2011.04.012; Wagner, F., Rutishauser, E., Blanc, L., Herault, B., Effects of plot size and census interval on descriptors of forest structure and dynamics (2010) Biotropica, 42, pp. 664-671; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Herault, B., Water availability is the main climate driver of neotropical tree growth (2012) Plos One, 7, pp. e34074. , doi:10.1371/journal.pone.0034074; Worbes, M., Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela (1999) Journal of Ecology, 87 (3), pp. 391-403. , DOI 10.1046/j.1365-2745.1999.00361.x; Wright, S., Vanschaik, C., Light and the phenology of tropical trees (1994) Am. Nat., 143, pp. 192-199. , doi:10.1086/285600; Wurth, M.K.R., Pelaez-Riedl, S., Wright, S.J., Korner, C., Non-structural carbohydrate pools in a tropical forest (2005) Oecologia, 143 (1), pp. 11-24. , DOI 10.1007/s00442-004-1773-2; Zalamea, M., Gonzalez, G., Leaffall phenology in a subtropical wet forest in Puerto Rico: From species to community patterns (2008) Biotropica, 40 (3), pp. 295-304. , DOI 10.1111/j.1744-7429.2007.00389.x; Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A., Monitoring vegetation phenology using MODIS (2003) Remote Sensing of Environment, 84 (3), pp. 471-475. , DOI 10.1016/S0034-4257(02)00135-9, PII S0034425702001359 Approved no
Call Number EcoFoG @ webmaster @ Serial 512
Permanent link to this record