|   | 
Details
   web
Records
Author Craine, J.M.; Elmore, A.J.; Wang, L.; Aranibar, J.; Bauters, M.; Boeckx, P.; Crowley, B.E.; Dawes, M.A.; Delzon, S.; Fajardo, A.; Fang, Y.; Fujiyoshi, L.; Gray, A.; Guerrieri, R.; Gundale, M.J.; Hawke, D.J.; Hietz, P.; Jonard, M.; Kearsley, E.; Kenzo, T.; Makarov, M.; Marañón-Jiménez, S.; McGlynn, T.P.; McNeil, B.E.; Mosher, S.G.; Nelson, D.M.; Peri, P.L.; Roggy, J.C.; Sanders-DeMott, R.; Song, M.; Szpak, P.; Templer, P.H.; Van der Colff, D.; Werner, C.; Xu, X.; Yang, Y.; Yu, G.; Zmudczyńska-Skarbek, K.
Title Isotopic evidence for oligotrophication of terrestrial ecosystems Type Journal Article
Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal
Volume 2 Issue 11 Pages 1735-1744
Keywords
Abstract Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (delta15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar delta15N declined by 0.6–1.6 per thousand. Examining patterns across different climate spaces, foliar delta15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in delta15N of tree rings and leaves from herbarium samples over the past 75–150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2397-334x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Craine2018 Serial 827
Permanent link to this record
 

 
Author Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; Kattge, J.; Pillar, V.D.; Schrodt, F.; Mahecha, M.D.; Peet, R.K.; Sandel, B.; van Bodegom, P.; Altman, J.; Alvarez-Dávila, E.; Arfin Khan, M.A.S.; Attorre, F.; Aubin, I.; Baraloto, C.; Barroso, J.G.; Bauters, M.; Bergmeier, E.; Biurrun, I.; Bjorkman, A.D.; Blonder, B.; Čarni, A.; Cayuela, L.; Černý, T.; Cornelissen, J.H.C.; Craven, D.; Dainese, M.; Derroire, G.; De Sanctis, M.; Díaz, S.; Doležal, J.; Farfan-Rios, W.; Feldpausch, T.R.; Fenton, N.J.; Garnier, E.; Guerin, G.R.; Gutiérrez, A.G.; Haider, S.; Hattab, T.; Henry, G.; Hérault, B.; Higuchi, P.; Hölzel, N.; Homeier, J.; Jentsch, A.; Jürgens, N.; Kącki, Z.; Karger, D.N.; Kessler, M.; Kleyer, M.; Knollová, I.; Korolyuk, A.Y.; Kühn, I.; Laughlin, D.C.; Lens, F.; Loos, J.; Louault, F.; Lyubenova, M.I.; Malhi, Y.; Marcenò, C.; Mencuccini, M.; Müller, J.V.; Munzinger, J.; Myers-Smith, I.H.; Neill, D.A.; Niinemets, Ü.; Orwin, K.H.; Ozinga, W.A.; Penuelas, J.; Pérez-Haase, A.; Petřík, P.; Phillips, O.L.; Pärtel, M.; Reich, P.B.; Römermann, C.; Rodrigues, A.V.; Sabatini, F.M.; Sardans, J.; Schmidt, M.; Seidler, G.; Silva Espejo, J.E.; Silveira, M.; Smyth, A.; Sporbert, M.; Svenning, J.-C.; Tang, Z.; Thomas, R.; Tsiripidis, I.; Vassilev, K.; Violle, C.; Virtanen, R.; Weiher, E.; Welk, E.; Wesche, K.; Winter, M.; Wirth, C.; Jandt, U.
Title Global trait–environment relationships of plant communities Type Journal Article
Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal
Volume 2 Issue 12 Pages 1906-1917
Keywords
Abstract Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2397-334x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Bruelheide2018 Serial 844
Permanent link to this record
 

 
Author Bréchet, L.; Courtois, E.A.; Saint-Germain, T.; Janssens, I.A.; Asensio, D.; Ramirez-Rojas, I.; Soong, J.L.; Van Langenhove, L.; Verbruggen, E.; Stahl, C.
Title Disentangling Drought and Nutrient Effects on Soil Carbon Dioxide and Methane Fluxes in a Tropical Forest Type Journal Article
Year 2019 Publication Frontiers in Environmental Science Abbreviated Journal Front. Environ. Sci.
Volume 7 Issue 180 Pages
Keywords carbon dioxide; drought; fertilization; methane; nitrogen; phosphorus; soil GHG fluxes; tropical forest
Abstract Tropical soils are a major contributor to the balance of greenhouse gas (GHG) fluxes in the atmosphere. Models of tropical GHG fluxes predict that both the frequency of drought events and changes in atmospheric deposition of nitrogen (N) will significantly affect dynamics of soil carbon dioxide (CO2) and methane (CH4) production and consumption. In this study, we examined the combined effect of a reduction in precipitation and an increase in nutrient availability on soil CO2 and CH4 fluxes in a primary French Guiana tropical forest. Drought conditions were simulated by intercepting precipitation falling through the forest canopy with tarpaulin roofs. Nutrient availability was manipulated through application of granular N and/or phosphorus (P) fertilizer to the soil. Soil water content (SWC) below the roofs decreased rapidly and stayed at continuously low values until roof removal, which as a consequence roughly doubled the duration of the dry season. After roof removal, SWC slowly increased but remained lower than in the control soils even after 2.5 months of wet-season precipitation. We showed that drought-imposed reduction in SWC decreased the CO2 emissions (i.e., CO2 efflux), but strongly increased the CH4 emissions. N, P, and N × P (i.e., NP) additions all significantly increased CO2 emission but had no effect on CH4 fluxes. In treatments where both fertilization and drought were applied, the positive effect of N, P, and NP fertilization on CO2 efflux was reduced. After roof removal, soil CO2 efflux was more resilient in the control plots than in the fertilized plots while there was only a modest effect of roof removal on soil CH4 fluxes. Our results suggest that a combined increase in drought and nutrient availability in soil can locally increase the emissions of both CO2 and CH4 from tropical soils, for a long term.
Address Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA, United States
Corporate Author Thesis
Publisher Frontiers Media S.A. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296665x (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 December 2019; Correspondence Address: Bréchet, L.; Centre of Excellence PLECO (Plant and Ecosystems), Department of Biology, University of AntwerpBelgium; email: laeti.brechet@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 899
Permanent link to this record
 

 
Author Richard-Hansen, C.; Davy, D.; Longin, G.; Gaillard, L.; Renoux, F.; Grenand, P.; Rinaldo, R.
Title Hunting in French Guiana Across Time, Space and Livelihoods Type Journal Article
Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal
Volume 7 Issue Pages 289
Keywords
Abstract Hunting sustainability in Amazonian ecosystems is a key challenge for modern stakeholders. Predictive models have evolved from first mostly biological data-based to more recent modelling including human behavior. We analyze here the hunting data collected in French Guiana through a panel of indices aiming at drawing the puzzle of parameters influencing hunting activity and impact in various socio ecological conditions across the country. Data were collected from five different study sites differing in cultural origins and remoteness from market economy, and over a ten years period. Most indices show an impact on wildlife populations, and using a full set of indicators allowed us to better understand some underlying mechanisms that lead to a community’s hunting profile. The results showed that there are noticeable differences between the study sites in the practices and the ways hunters face the changes in environment and resources availability
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2296-701x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 880
Permanent link to this record
 

 
Author Do, N.A.; Dias, D.; Zhang, Z.; Huang, X.; Nguyen, T.T.; Pham, V.V.; Nait-Rabah, O.
Title Study on the behavior of squared and sub-rectangular tunnels using the Hyperstatic Reaction Method Type Journal Article
Year 2020 Publication Transportation Geotechnics Abbreviated Journal Transp. Geotech.
Volume 22 Issue 100321 Pages
Keywords Finite element method; Lining; Squared shape; Sub-rectangular shape; Tunnel; efficiency measurement; finite element method; numerical model; transportation development; transportation planning; tunnel design; tunnel lining
Abstract
Address Saint-Petersburg Mining University, Russian Federation
Corporate Author Thesis
Publisher Elsevier Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 22143912 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 915
Permanent link to this record
 

 
Author Vedel, V.; Rheims, C.; Murienne, J.; Brescovit, A.D.
Title Biodiversity baseline of the French Guiana spider fauna Type Journal Article
Year 2013 Publication SpringerPlus Abbreviated Journal SpringerPlus
Volume 2 Issue 1 Pages 1-19
Keywords Arachnids; Araneae; Bio monitoring; French Guiana; Neotropics; Species richness
Abstract The need for an updated list of spiders found in French Guiana rose recently due to many upcoming studies planned. In this paper, we list spiders from French Guiana from existing literature (with corrected nomenclature when necessary) and from 2142 spiders sampled in 12 sites for this baseline study. Three hundred and sixty four validated species names of spider were found in the literature and previous authors' works. Additional sampling, conducted for this study added another 89 identified species and 62 other species with only a genus name for now. The total species of spiders sampled in French Guiana is currently 515. Many other Morphospecies were found but not described as species yet. An accumulation curve was drawn with seven of the sampling sites and shows no plateau yet. Therefore, the number of species inhabiting French Guiana cannot yet be determined. As the very large number of singletons found in the collected materials suggests, the accumulation curve indicates nevertheless that more sampling is necessary to discover the many unknown spider species living in French Guiana, with a focus on specific periods (dry season and wet season) and on specific and poorly studied habitats such as canopy, inselberg and cambrouze (local bamboo monospecific forest). © 2013 Vedel et al.
Address CNRS, EFA, UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique), Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 21931801 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 25 November 2013; Source: Scopus; doi: 10.1186/2193-1801-2-361; Language of Original Document: English; Correspondence Address: Vedel, V.; Laboratoire d'entomologie Entobios, 5 Bis rue François Thomas, 97310 Kourou, Guyane Française, France; email: vincent.vedel@ecofog.gf Approved no
Call Number EcoFoG @ webmaster @ Serial 510
Permanent link to this record
 

 
Author Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; Derroire, G.; dos-Santos, M.N.; Meyer, V.; Saleska, S.; Trumbore, S.; Vincent, G.
Title Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests Type Journal Article
Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.
Volume 125 Issue 8 Pages e2020JG005677
Keywords Amazon; drought; ecosystem modeling; evapotranspiration; forest degradation; remote sensing; carbon cycle; deforestation; dry season; evapotranspiration; hydrological cycle; logging (timber); net primary production; remote sensing; sensible heat flux; tropical forest; understory; water stress; Amazon River
Abstract Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems. ©2020. The Authors.
Address AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 21698953 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 957
Permanent link to this record
 

 
Author Denis, T.; Richard-Hansen, C.; Brunaux, O.; Guitet, S.; Hérault, B.
Title Birds of a feather flock together: Functionally similar vertebrates positively co-occur in Guianan forests Type Journal Article
Year 2019 Publication Ecosphere Abbreviated Journal Ecosphere
Volume 10 Issue 3 Pages e02566
Keywords activity matching; birds; Guiana Shield; information exchange; mammals; mixed-species associations; mutualism; terra firme rainforests
Abstract Medium- and large-sized vertebrates play a key role in shaping overall forest functioning. Despite this, vertebrate interactions, from competition to mutualism, remain poorly studied, even though these interactions should be taken into account in our conservation and management strategies. Thus, we tackled the question of vertebrate co-occurrence in tropical rainforests: Are (negative or positive) co-occurrences dependent on forest structure and composition? and Are these co-occurrences linked to functional species similarity? We recorded the occurrence of 21 medium- and large-sized vertebrates in 19 French Guianan locations in which a large set of forest structure and composition descriptors were collected. We used a probabilistic model to look for co-occurrences at different spatial scales, and species pairwise co-occurrences were then compared to those generated solely on the basis of forest structure and composition. We then quantified the co-occurrence strength between pairwise species dyads and determined whether they relied on species functional similarity, controlling for the environmental effects. We found that positive co-occurrences vastly outnumbered negative co-occurrences, were only partly shaped by the local environment, and were closely linked to species functional similarity. Thus, groups of species sharing similar functional traits are more prone to co-occur, highlighting the key role of functional redundancy in structuring species assemblages. We discuss how positive interactions could generate the predominance of positive co-occurrences in oligotrophic terra firme (unflooded) forests when resources are scarce and dispersed in dry season. Finally, we identified functional groups based on co-occurrence strength and suggested that frugivory/granivory and body size are of primary importance in species interactions in Neotropical vertebrate communities. © 2019 The Authors.
Address INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 21508925 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020; Correspondence Address: Denis, T.; Office National de la Chasse et de la Faune Sauvage, UMR EcoFoG (AgroParisTech, Cirad, CNRS, INRA, Université des Antilles, Université de Guyane)France; email: thomas.denis@ecofog.gf Approved no
Call Number EcoFoG @ webmaster @ Serial 924
Permanent link to this record
 

 
Author Ruiz-González, M.X.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Carrión, A.D.A.; Orivel, J.
Title Do host plant and associated ant species affect microbial communities in myrmecophytes? Type Journal Article
Year 2019 Publication Insects Abbreviated Journal Insects
Volume 10 Issue 11 Pages 391
Keywords Allomerus decemarticulatus; Allomerus octoarticulatus; Azteca sp; Cf; Cordia nodosa; Depilis; Domatia; Hirtella physophora; Microbial diversity
Abstract Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.
Address Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning, Guangxi 530005, China
Corporate Author Thesis
Publisher Mdpi Ag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 20754450 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 18 November 2019; Correspondence Address: Ruiz-González, M.X.; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Ecuador; email: marioxruizgonzalez@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 896
Permanent link to this record
 

 
Author Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M.
Title The peptide venom composition of the fierce stinging ant tetraponera aethiops (formicidae: Pseudomyrmecinae) Type Journal Article
Year 2019 Publication Toxins Abbreviated Journal Toxins
Volume 11 Issue 12 Pages 732
Keywords Defensive venom; Dimeric peptides; Peptidome; Tetraponera aethiops
Abstract In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC-MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.
Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, 97310, France
Corporate Author Thesis
Publisher Mdpi Ag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 20726651 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 902
Permanent link to this record