|   | 
Details
   web
Records
Author Gond, V.; Bartholome, E.; Ouattara, F.; Nonguierma, A.; Bado, L.
Title Monitoring and mapping of waters and wetlands in arid regions using the SPOT-4 VEGETATION imaging system Type Journal Article
Year 2004 Publication International Journal of Remote Sensing Abbreviated Journal Int. J. Remote Sens.
Volume 25 Issue 5 Pages (down) 987-1004
Keywords
Abstract Monitoring the state of small waterbodies and wetlands is very useful in dry regions, because their existence is entirely controlled by the rhythm of local rainfall. On VEGETATION image colour composites, waterbodies and marshy vegetation show up clearly. Yet simple image classification does not yield sufficiently good results because 'spectral signatures' vary significantly together with the ecological conditions of these surfaces. A robust contextual procedure taking into account local contrast was successfully developed and tested. A systematic validation was carried out and a map of waterbodies and wetlands was produced for Burkina Faso and neighbouring regions.
Address Ctr Commun Rech, I-21020 Ispra, VA, Italy, Email: valery.gond@cirad.fr
Corporate Author Thesis
Publisher TAYLOR & FRANCIS LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes ISI:000187996500007 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 266
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Rossi, V.; Rejou-Mechain, M.; Freycon, V.; Fayolle, A.; Saint-André, L.; Cornu, G.; Gérard, J.; Sarrailh, J.-M.; Flores, O.; Baya, F.; Billand, A.; Fauvet, N.; Gally, M.; Henry, M.; Hubert, D.; Pasquier, A.; Picard, N.
Title Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests Type Journal Article
Year 2011 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 99 Issue 4 Pages (down) 981-990
Keywords Basal area; Central African Republic; Determinants of plant community diversity and structure; Life-history strategy; Soil fertility; Species sorting; Vital rates; Water reserve; Wood density; aboveground biomass; basal area; climate change; data set; database; diameter; forest ecosystem; forest inventory; life history trait; nutrient availability; physical property; plant community; resource availability; soil fertility; soil nutrient; soil texture; soil type; stem; tropical forest; wood; Central African Republic
Abstract 1.Regional above-ground biomass estimates for tropical moist forests remain highly inaccurate mostly because they are based on extrapolations from a few plots scattered across a limited range of soils and other environmental conditions. When such conditions impact biomass, the estimation is biased. The effect of soil types on biomass has especially yielded controversial results. 2.We investigated the relationship between above-ground biomass and soil type in undisturbed moist forests in the Central African Republic. We tested the effects of soil texture, as a surrogate for soil resources availability and physical constraints (soil depth and hydromorphy) on biomass. Forest inventory data were collected for trees ≥20cm stem diameter in 2754 0.5ha plots scattered over 4888km2. The plots contained 224 taxons, of which 209 were identified to species. Soil types were characterized from a 1:1000000 scale soil map. Species-specific values for wood density were extracted from the CIRAD's data base of wood technological properties. 3.We found that basal area and biomass differ in their responses to soil type, ranging from 17.8m2ha-1 (217.5tha-1) to 22.3m2ha-1 (273.3tha-1). While shallow and hydromorphic soils support forests with both low stem basal area and low biomass, forests on deep resource-poor soils are typically low in basal area but as high in biomass as forests on deep resource-rich soils. We demonstrated that the environmental filtering of slow growing dense-wooded species on resource-poor soils compensates for the low basal area, and we discuss whether this filtering effect is due to low fertility or to low water reserve. 4.Synthesis. We showed that soil physical conditions constrained the amount of biomass stored in tropical moist forests. Contrary to previous reports, our results suggest that biomass is similar on resource-poor and resource-rich soils. This finding highlights both the importance of taking into account soil characteristics and species wood density when trying to predict regional patterns of biomass. Our findings have implications for the evaluation of biomass stocks in tropical forests, in the context of the international negotiations on climate change. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.
Address CIRAD, BP 4035, Libreville, Gabon
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 1; Export Date: 23 October 2011; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01829.x; Language of Original Document: English; Correspondence Address: Gourlet-Fleury, S.; Cirad, UR BandSEF, Biens et Services des Ecosystèmes Forestiers tropicaux, Campus International de Baillarguet, TA C-105/D, F-34398, Montpellier, France; email: sylvie.gourlet-fleury@cirad.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 361
Permanent link to this record
 

 
Author Rowland, L.; Hill, T.C.; Stahl, C.; Siebicke, L.; Burban, B.; Zaragoza-Castells, J.; Ponton, S.; Bonal, D.; Meir, P.; Williams, M.
Title Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Global Change Biol.
Volume 20 Issue 3 Pages (down) 979-991
Keywords Carbon use efficiency; Dalec; Data assimilation; Ecosystem respiration; French Guiana; Seasonal carbon fluxes; Tropical forest
Abstract The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon cycle model. The resulting analysis quantifies, with uncertainty estimates, the seasonal changes in the net carbon flux of a tropical rainforest which experiences a pronounced dry season. We show that the carbon accumulation in this forest was four times greater in the dry season than in the wet season and that this was accompanied by a 5% increase in the carbon use efficiency. This seasonal response was caused by a dry season increase in gross primary productivity, in response to radiation and a similar magnitude decrease in heterotrophic respiration, in response to drying soils. The analysis also predicts increased carbon allocation to leaves and wood in the wet season, and greater allocation to fine roots in the dry season. This study demonstrates implementation of seasonal variations in parameters better enables models to simulate observed patterns in data. In particular, we highlight the necessity to simulate the seasonal patterns of heterotrophic respiration to accurately simulate the net carbon flux seasonal tropical forest. © 2013 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Address Research School of Biology, Division of Plant Sciences, Australian National University, Canberra, ACT, 0200, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 13541013 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996):1; Export Date: 24 February 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: Rowland, L.; School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, United Kingdom; email: lucy.rowland@ed.ac.uk; Funding Details: FT110100457, ARC, Australian Research Council; Funding Details: NE/F002149/1, NERC, Natural Environment Research Council; Funding Details: NE/J011002/1, NERC, Natural Environment Research Council Approved no
Call Number EcoFoG @ webmaster @ Serial 529
Permanent link to this record
 

 
Author Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Baruffol, M.; Bourland, N.; Bruelheide, H.; Daïnou, K.; de Gouvenain, R.C.; Doucet, J.-L.; Doust, S.; Fine, P.V.A.; Fortunel, C.; Haase, J.; Holl, K.D.; Jactel, H.; Li, X.; Kitajima, K.; Koricheva, J.; Martínez-Garza, C.; Messier, C.; Paquette, A.; Philipson, C.; Piotto, D.; Poorter, L.; Posada, J.M.; Potvin, C.; Rainio, K.; Russo, S.E.; Ruiz-Jaen, M.; Scherer-Lorenzen, M.; Webb, C.O.; Wright, S.J.; Zahawi, R.A.; Hector, A.
Title Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why Type Journal Article
Year 2015 Publication Journal of Ecology Abbreviated Journal Journal of Ecology
Volume 103 Issue 4 Pages (down) 978-989
Keywords Functional ecology; FunDivEurope; Growth; Hierarchical models; Plant population and community dynamics; Relative growth rate; Size-standardized growth rate; TreeDivNet
Abstract Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society.
Address Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 3 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 609
Permanent link to this record
 

 
Author Morel, H.; Mangenet, T.; Beauchene, J.; Ruelle, J.; Nicolini, E.; Heuret, P.; Thibaut, B.
Title Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest Type Journal Article
Year 2015 Publication Trees – Structure and Function Abbreviated Journal Trees – Structure and Function
Volume 29 Issue 4 Pages (down) 973-984
Keywords Cambial activity; Climate; French Guiana; Leaf shedding pattern; Tropical rainforest
Abstract Key message: In French Guiana, the leaf and cambium phenologies should not be considered only as exogenous-driven processes, as the dry season, but also as endogenous-driven, as tree development stage. Abstract: Studies of the periodicity of wood formation provide essential data on tree age and on factors that control tree growth. The aim of this work was to investigate cambial phenology and its relation with leaf phenology and climatic seasonality in two briefly deciduous tropical rainforest species belonging to the genus Parkia. Wood microcores were collected every 15 days from April 2009 to February 2012 from five trees of each species. The microcores were stained with cresyl violet acetate to facilitate counting the number of cells in the cambial zone, in the radial enlargement zone and wall-thickening zone. At the same time, we observed leaf shedding pattern in the crown of the same trees. In both species, cambial activity was significantly reduced during the leafless period. In P. nitida, these two concomitant events were observed during the dry season whereas in P. velutina they can occur anytime in the year with no apparent link with seasonality. In conclusion, the period of reduced cambial activity in some tropical rainforest trees may be independent of rainfall seasonality and not necessarily follow an annual cycle. It appears that leaf phenology is a good proxy to estimate cambial activity. © 2015, Springer-Verlag Berlin Heidelberg.
Address CNRS, UMR Laboratoire de Mécanique et Génie Civil de Montpellier, Montpellier, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 16 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 610
Permanent link to this record
 

 
Author Malé, P.-J.G.; Bardon, L.; Besnard, G.; Coissac, E.; Delsuc, F.; Engel, J.; Lhuillier, E.; Scotti-Saintagne, C.; Tinaut, A.; Chave, J.
Title Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family Type Journal Article
Year 2014 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.
Volume 14 Issue 5 Pages (down) 966-975
Keywords Next-generation sequencing; Organellar genome; Phylogenomics; Tropical trees
Abstract Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups. © 2014 John Wiley & Sons Ltd.
Address GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, F-31326, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17550998 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2014; Correspondence Address: Malé, P.-J.G.; UMR 5174 Laboratoire Évolution and Diversité Biologique, CNRS, Université Paul Sabatier, ENFA, 118 route de Narbonne, Toulouse, F-31062, France; email: pjg.male@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 559
Permanent link to this record
 

 
Author Marti, G.; Eparvier, V.; Moretti, C.; Prado, S.; Grellier, P.; Hue, N.; Thoison, O.; Delpech, B.; Gueritte, F.; Litaudon, M.
Title Antiplasmodial benzophenone derivatives from the root barks of Symphonia globulifera (Clusiaceae) Type Journal Article
Year 2010 Publication Phytochemistry Abbreviated Journal Phytochemistry
Volume 71 Issue 8-9 Pages (down) 964-974
Keywords Symphonia globulifera; Clusiaceae; Benzophenone; Symphonone; Antiplasmodial; LC/ESI-MS
Abstract In an effort to find antimalarial drugs, a systematic in vitro evaluation on a chloroquine-resistant strain of Plasmodium falciparum (FcB1) was undertaken on sixty plant extracts collected in French Guiana. The ethyl acetate extract obtained from the root barks of Symphonia globulifera exhibited a strong antiplasmodial activity (97% at 10 μg/ml). The phytochemical investigation of this extract led to the isolation of nine polycyclic polyprenylated acylphloroglucinol (PPAPs) compounds and two oxidized derivatives. All compounds showed antiplasmodial activity with IC(50)s ranged from 2.1 to 10.1 μM. A LC/ESI-MSn study performed on polyprenylated benzophenones previously isolated from Moronobea coccinea provided a reliable method for their detection in the extract and structural elucidation. (C) 2010 Elsevier Ltd. All rights reserved.
Address [Marti, Guillaume; Hue, Nathalie; Thoison, Odile; Delpech, Bernard; Gueritte, Francoise; Litaudon, Marc] CNRS, Inst Chim Subst Nat, Ctr Rech Gif, F-91198 Gif Sur Yvette, France, Email: marc.litaudon@icsn.cnrs-gif.fr
Corporate Author Thesis
Publisher PERGAMON-ELSEVIER SCIENCE LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9422 ISBN Medium
Area Expedition Conference
Notes ISI:000279077400016 Approved no
Call Number EcoFoG @ webmaster @ Serial 284
Permanent link to this record
 

 
Author Feldpausch, T.R.; Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Alarcón, A.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragao, L.E.O.C.; Arroyo, L.; Aymard C., G.A.; Baker, T.R.; Baraloto, C.; Barroso, J.; Bonal, D.; Castro, W.; Chama, V.; Chave, J.; Domingues, T.F.; Fauset, S.; Groot, N.; Honorio Coronado, E.; Laurance, S.; Laurance, W.F.; Lewis, S.L.; Licona, J.C.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza Bautista, C.; Neill, D.A.; Oliveira, E.A.; Oliveira dos Santos, C.; Pallqui Camacho, N.C.; Pardo-Molina, G.; Prieto, A.; Quesada, C.A.; Ramírez, F.; Ramírez-Angulo, H.; Réjou-Méchain, M.; Rudas, A.; Saiz, G.; Salomão, R.P.; Silva-Espejo, J.E.; Silveira, M.; ter Steege, H.; Stropp, J.; Terborgh, J.; Thomas-Caesar, R.; van der Heijden, G.M.F.; Vásquez Martinez, R.; Vilanova, E.; Vos, V.A.
Title Amazon forest response to repeated droughts Type Journal Article
Year 2016 Publication Global Biogeochemical Cycles Abbreviated Journal Global Biogeochemical Cycles
Volume 30 Issue 7 Pages (down) 964-982
Keywords carbon; forest productivity; precipitation; tree mortality; vegetation dynamics; water deficit
Abstract The Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin-wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin-wide ground-based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground-based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: −0.43 Mg ha−1, confidence interval (CI): −1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long-term biomass sink during the baseline pre-2010 drought period (1998 to pre-2010) of 1.33 Mg ha−1 yr−1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was −1.95 Mg ha−1 yr−1 (CI:−2.77, −1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha−1 yr−1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (−0.50 Mg ha−1 yr−1, CI:−0.78, −0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre-2010 drought history. Thus, there was no evidence that pre-2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin-wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (−0.07 Pg C yr−1 CI:−0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land-atmospheric fluxes during 2010. Relative to the long-term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event. ©2016. American Geophysical Union. All Rights Reserved.
Address Centro de Investigación y Promoción del Campesinado Norte Amazónico, Riberalta, Bolivia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 690
Permanent link to this record
 

 
Author Cereghino, R.; Leroy, C.; Carrias, J.F.; Pelozuelo, L.; Segura, C.; Bosc, C.; Dejean, A.; Corbara, B.
Title Ant-plant mutualisms promote functional diversity in phytotelm communities Type Journal Article
Year 2011 Publication Functional Ecology Abbreviated Journal Funct. Ecol.
Volume 25 Issue 5 Pages (down) 954-963
Keywords ant gardens; biodiversity; bromeliads; community functions; forest; French Guiana; invertebrates; phytotelmata; two-species mutualism
Abstract 1. Our understanding of the contribution of interspecific interactions to functional diversity in nature lags behind our knowledge of spatial and temporal patterns. Although two-species mutualisms are found in all types of ecosystems, the study of their ecological influences on other community members has mostly been limited to third species, while their influence on entire communities remains largely unexplored. 2. We hypothesized that mutualistic interactions between two respective ant species and an epiphyte mediate the biological traits composition of entire invertebrate communities that use the same host plant, thereby affecting food webs and functional diversity at the community level. 3. Aechmea mertensii (Bromeliaceae) is both a phytotelm ('plant-held water') and an ant-garden epiphyte. We sampled 111 bromeliads (111 aquatic invertebrate communities) associated with either the ant Pachycondyla goeldii or Camponotus femoratus. The relationships between ants, bromeliads and invertebrate abundance data were examined using a redundancy analysis. Biological traits information for invertebrates was structured using a fuzzy-coding technique, and a co-inertia analysis between traits and abundance data was used to interpret functional differences in bromeliad ecosystems. 4. The vegetative traits of A. mertensii depended on seed dispersion by C. femoratus and P. goeldii along a gradient of local conditions. The ant partner selected sets of invertebrates with traits that were best adapted to the bromeliads' morphology, and so the composition of the biological traits of invertebrate phytotelm communities depends on the identity of the ant partner. Biological traits suggest a bottom-up control of community structure in C. femoratus-associated phytotelmata and a greater structuring role for predatory invertebrates in P. goeldii-associated plants. 5. This study presents new information showing that two-species mutualisms affect the functional diversity of a much wider range of organisms. Most biological systems form complex networks where nodes (e. g. species) are more or less closely linked to each other, either directly or indirectly, through intermediate nodes. Our observations provide community-level information about biological interactions and functional diversity, and perspectives for further observations intended to examine whether large-scale changes in interacting species/community structure over broad geographical and anthropogenic gradients affect ecosystem functions.
Address [Cereghino, R; Pelozuelo, L; Segura, C; Bosc, C] Univ Toulouse, EcoLab, Lab Ecol Fonct & Environm, UMR 5245, F-31062 Toulouse, France, Email: cereghin@cict.fr
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes WOS:000295132100003 Approved no
Call Number EcoFoG @ webmaster @ Serial 341
Permanent link to this record
 

 
Author Haettenschwiler, S.; Coq, S.; Barantal, S.; Handa, I.T.
Title Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis Type Journal Article
Year 2011 Publication New Phytologist Abbreviated Journal New Phytol.
Volume 189 Issue 4 Pages (down) 950-965
Keywords energy starvation; French Guiana; litter quality; mycorrhizas; nutrient cycling; nutrient limitation; phosphorus; soil fauna
Abstract Proper estimates of decomposition are essential for tropical forests, given their key role in the global carbon (C) cycle. However, the current paradigm for litter decomposition is insufficient to account for recent observations and may limit model predictions for highly diverse tropical ecosystems. In light of recent findings from a nutrient-poor Amazonian rainforest, we revisit the commonly held views that: litter traits are a mere legacy of live leaf traits; nitrogen (N) and lignin are the key litter traits controlling decomposition; and favourable climatic conditions result in rapid decomposition in tropical forests. Substantial interspecific variation in litter phosphorus (P) was found to be unrelated to variation in green leaves. Litter nutrients explained no variation in decomposition, which instead was controlled primarily by nonlignin litter C compounds at low concentrations with important soil fauna effects. Despite near-optimal climatic conditions, tropical litter decomposition proceeded more slowly than in a climatically less favourable temperate forest. We suggest that slow decomposition in the studied rainforest results from a syndrome of poor litter C quality beyond a simple lignin control, enforcing energy starvation of decomposers. We hypothesize that the litter trait syndrome in nutrient-poor tropical rainforests may have evolved to increase plant access to limiting nutrients via mycorrhizal associations.
Address [Haettenschwiler, Stephan; Coq, Sylvain; Barantal, Sandra; Handa, Ira Tanya] CNRS, CEFE, F-34293 Montpellier 5, France, Email: stephan.hattenschwiler@cefe.cnrs.fr
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Medium
Area Expedition Conference
Notes ISI:000286940500009 Approved no
Call Number EcoFoG @ webmaster @ Serial 296
Permanent link to this record