toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Zalamea, P.-C.; Sarmiento, C.; Stevenson, P.R.; Rodríguez, M.; Nicolini, E.; Heuret, P. url  openurl
  Title Effect of rainfall seasonality on the growth of Cecropia sciadophylla: Intra-annual variation in leaf production and node length Type Journal Article
  Year 2013 Publication Journal of Tropical Ecology Abbreviated Journal J. Trop. Ecol.  
  Volume 29 Issue 4 Pages 361-365  
  Keywords leaf phenology; Neotropics; pioneer plants; plant growth; plant morphology; rainfall seasonality; Urticaceae  
  Abstract Patterns of leaf production and leaf fall directly influence leaf area index and forest productivity. Here, we focused on Cecropia sciadophylla individuals inhabiting the extremes of the gradient in seasonality in rainfall at which C. sciadophylla occurs. In Colombia and French Guiana we compared the intra-annual variation in leaf production as well as the intra-annual fluctuation in internode length on a total of 69 saplings ranging in size from 1 to 2 m. The mean rate of leaf production was ~2 leaves mo -1 in both populations, and the rate of leaf production was constant throughout the year. Our results showed monthly variation in internode length and the number of live leaves per sapling in the seasonal habitat and variation only in internode length in the everwet habitat. Because the rate of leaf production is constant at both localities, the difference in number of live leaves per sapling at the seasonal site must reflect seasonal variation in leaf life span. We show that in Cecropia, internode length can serve as an indicator of precipitation seasonality. Finally an open question is whether leaf production in other pioneer species is also independent of climatic seasonal cues. This information could allow us to link growth and climate of secondary forest species and better understand how past and future climate can affect plant growth trajectories. © Cambridge University Press 2013.  
  Address INRA, UMR ECOFOG, Kourou F-97310, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 14 July 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 496  
Permanent link to this record
 

 
Author (down) Zalamea, P.-C.; Heuret, P.; Sarmiento, C.; Rodríguez, M.; Berthouly, A.; Guitet, S.; Nicolini, E.; Delnatte, C.; Barthélémy, D.; Stevenson, P.R. pdf  url
openurl 
  Title The genus Cecropia: A biological clock to estimate the age of recently disturbed areas in the neotropics Type Journal Article
  Year 2012 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 7 Issue 8 Pages e42643  
  Keywords  
  Abstract Forest successional processes following disturbance take decades to play out, even in tropical forests. Nonetheless, records of vegetation change in this ecosystem are scarce, increasing the importance of the chronosequence approach to study forest recovery. However, this approach requires accurate dating of secondary forests, which until now was a difficult and/or expensive task. Cecropia is a widespread and abundant pioneer tree genus of the Neotropics. Here we propose and validate a rapid and straightforward method to estimate the age of secondary forest patches based on morphological observations of Cecropia trees. We found that Cecropia-inferred ages were highly correlated with known ages of the forest. We also demonstrate that Cecropia can be used to accurately date disturbances and propose twenty-one species distributed all over the geographical range of the genus as potential secondary forest chronometer species. Our method is limited in applicability by the maximal longevity of Cecropia individuals. Although the oldest chronosequence used in this study was 20 years old, we argue that at least for the first four decades after disturbance, the method described in this study provides very accurate estimations of secondary forest ages. The age of pioneer trees provides not only information needed to calculate the recovery of carbon stocks that would help to improve forest management, but also provides information needed to characterize the initial floristic composition and the rates of species remigration into secondary forest. Our contribution shows how successional studies can be reliably and inexpensively extended without the need to obtain forest ages based on expensive or potentially inaccurate data across the Neotropics. © 2012 Zalamea et al.  
  Address Smithsonian Tropical Research Institute, Ancón, Panama  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19326203 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 29 August 2012; Source: Scopus; Art. No.: e42643; doi: 10.1371/journal.pone.0042643; Language of Original Document: English; Correspondence Address: Zalamea, P.-C.; Smithsonian Tropical Research Institute, Ancón, Panama; email: camilozalamea@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 424  
Permanent link to this record
 

 
Author (down) Young, E.F.; Belchier, M.; Hauser, L.; Horsburgh, G.J.; Meredith, M.P.; Murphy, E.J.; Pascoal, S.; Rock, J.; Tysklind, N.; Carvalho, G.R. pdf  url
openurl 
  Title Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species Type Journal Article
  Year 2015 Publication Evolutionary Applications Abbreviated Journal Evolutionary Applications  
  Volume 8 Issue 5 Pages 486-509  
  Keywords Notothenia rossii; Champsocephalus gunnari; Connectivity; Individual-based Modelling; Ocean circulation; Planktonic dispersal; Population genetics; Scotia Sea  
  Abstract Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. © 2015 The Authors.  
  Address Campus Agronomique, Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 May 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 604  
Permanent link to this record
 

 
Author (down) Yguel, B.; Piponiot, C.; Mirabel, A.; Dourdain, A.; Hérault, B.; Gourlet-Fleury, S.; Forget, P.-M.; Fontaine, C. doi  openurl
  Title Beyond species richness and biomass: Impact of selective logging and silvicultural treatments on the functional composition of a neotropical forest Type Journal Article
  Year 2019 Publication Forest Ecology and Management Abbreviated Journal  
  Volume 433 Issue Pages 528-534  
  Keywords Selective logging; Humid tropical forest; Functional composition; Seed dispersal; Carbon storage; Commercial stock; Anthropogenic pressure; Sustainability  
  Abstract Tropical forests harbor the greatest terrestrial biodiversity and provide various ecosystem services. The increase of human activities on these forests, among which logging, makes the conservation of biodiversity and associated services strongly dependent on the sustainability of these activities. However the indicators commonly used to assess the impact of forest exploitation, namely species richness and biomass, provide a limited understanding of their sustainability. Here, we assessed the sustainability of common forest exploitation in the Guiana Shield studying the recovery of two ecosystem services i.e. carbon storage and wood stock, and an ecosystem function i.e. seed dispersal by animals. Specifically, we compared total and commercial biomass, as well as functional composition in seed size of animal-dispersed species in replicated forest plots before and 27 years after exploitation. Species richness is also studied to allow comparison. While species richness was not affected by forest exploitation, total and commercial biomass as well as seed size of animal-dispersed species decreased 27 years after exploitation, similarly to forests affected by hunting. These results show that ecosystem services and function likely did not recover even at the lowest intensity of forest exploitation studied, questioning the sustainability of the most common rotation-cycle duration applied in the tropics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1127 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 839  
Permanent link to this record
 

 
Author (down) Yazdani, R.; Scotti, I.; Jansson, G.; Plomion, C.; Mathur, G. openurl 
  Title Inheritance and diversity of simple sequence repeat (SSR) microsatellite markers in various families of Picea abies Type Journal Article
  Year 2003 Publication Hereditas Abbreviated Journal Hereditas  
  Volume 138 Issue 3 Pages 219-227  
  Keywords  
  Abstract A large number of sequence-specific SSRs were screened by using electrophoresis on metaphore agarose gels with the bands visualized by ethidium bromide staining. Many SSRs appeared as codominant and many as dominant markers, with presence or absence of bands. A simple Mendelian inheritance pattern for most codominant and dominant SSR loci was found. For many codominant SSR markers, null alleles were detected. The proportion of dominant microsatellites detected in this study (close to 50 %) was much higher than that commonly reported in many other studies. A high proportion of dominant markers together with a high frequency of codominant markers with null alleles may represent two important limitations for the use of microsatellites in different studies. On the other hand, many polymorphic codominant SSR microsatellite markers were found to be highly repeatable, and can be used for population studies, seed certification, quality control of controlled crosses, paternity analysis, pollen contamination, and mapping of QTL in related families. In this paper, we report on the inheritance pattern and diversity of codominant and dominant SSR microsatellites in seven families of Picea abies sharing a common mother.  
  Address Swedish Univ Agr Sci, Dept Plant Biol & Forest Genet, Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher BLACKWELL MUNKSGAARD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-0661 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000187074000010 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 268  
Permanent link to this record
 

 
Author (down) Yatabe, Y.; Kane, N.C.; Scotti-Saintagne, C.; Rieseberg, L.H. openurl 
  Title Rampant gene exchange across a strong reproductive barrier between the annual sunflowers, Helianthus annuus and H-petiolaris Type Journal Article
  Year 2007 Publication Genetics Abbreviated Journal Genetics  
  Volume 175 Issue 4 Pages 1883-1893  
  Keywords  
  Abstract Plant species may remain morphologically distinct despite gene exchange with congeners, yet little is known about the genomewide pattern of introgression among species. Here we analyze the effects of persistent gene flow on genomic differentiation between the sympatric sunflower species Helianthus annuus and H. petiolaris. While the species are strongly isolated in testcrosses, genetic distances at 108 microsatellite loci and 14 sequenced genes are highly variable and much lower (on average) than for more closely related but historically allopatric congeners. Our analyses failed to detect a positive association between levels of genetic differentiation and chromosomal rearrangements (as reported in a prior publication) or proximity to QTL for morphological differences or hybrid sterility. However, a significant increase in differentiation was observed for markers within 5 cM of chromosomal breakpoints. Together, these results suggest that islands of differentiation between these two species are small, except in areas of low recombination. Furthermore, only microsatellites associated with ESTs were identified as outlier loci in tests for selection, which might indicate that the ESTs themselves are the targets of selection rather than linked genes (or that coding regions are not randomly distributed). In general, these results indicate that even strong and genetically complex reproductive barriers cannot prevent widespread introgression.  
  Address Indiana Univ, Dept Biol, Bloomington, IN 47405 USA, Email: lriesebe@indiana.edu  
  Corporate Author Thesis  
  Publisher GENETICS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000246448800029 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 216  
Permanent link to this record
 

 
Author (down) Yamamoto, H.; Almeras, T. doi  openurl
  Title A mathematical verification of the reinforced-matrix hypothesis using the Mori-Tanaka theory Type Journal Article
  Year 2007 Publication Journal of Wood Science Abbreviated Journal J. Wood Sci.  
  Volume 53 Issue 6 Pages 505-509  
  Keywords Engineering  
  Abstract This article presents a theoretical verification of the reinforced-matrix hypothesis derived from tensor equations, σ W = σ f + σ m and ε W = ε f = ε m (Wood Sci Technol 32:171–182, 1998; Wood Sci Technol 33:311–325, 1999; J Biomech Eng 124:432–440, 2002), using classical Mori-Tanaka theory on the micromechanics of fiber-reinforced materials (Acta Metall 21:571–574, 1973; Micromechanics — dislcation and inclusions (in Japanese), pp 141–147, 1976). The Mori-Tanaka theory was applied to a small fragment of the cell wall undergoing changes in its physical state, such as those arising from sorption of moisture, maturation of wall components, or action of an external force, to obtain ⟨σ A⟩D = ϕ·⟨σ F⟩I + (1−ϕ)·⟨σ M⟩D−I. When the constitutive equation of each constituent material was applied to the equation ⟨σ A⟩D = ϕ·⟨σ F⟩I + (1−ϕ)·⟨σ M⟩D−I, the equations σ W = σ f + σ m and ε W = ε f = ε m were derived to lend support to the concept that two main phases, the reinforcing cellulose microfibril and the lignin-hemicellulose matrix, coexist in the same domain. The constitutive equations for the cell wall fragment were obtained without recourse to additional parameters such as Eshelby’s tensor S and Hill’s averaged concentration tensors AF and AM. In our previous articles, the coexistence of two main phases and σ W = σ f + σ m and ε W = ε f =ε m had been taken as our starting point to formulate the behavior of wood fiber with multilayered cell walls. The present article provides a rational explanation for both concepts.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Japan Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-0211 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 215  
Permanent link to this record
 

 
Author (down) Woolfit, M.; Iturbe-Ormaetxe, I.; Brownlie, J.C.; Walker, T.; Riegler, M.; Seleznev, A.; Popovici, J.; Rancès, E.; Wee, B.A.; Pavlides, J.; Sullivan, M.J.; Beatson, S.A.; Lane, A.; Sidhu, M.; McMeniman, C.J.; McGraw, E.A.; O'Neill, S.L. pdf  url
openurl 
  Title Genomic evolution of the pathogenic Wolbachia strain, wMelPop Type Journal Article
  Year 2013 Publication Genome Biology and Evolution Abbreviated Journal Genome Biolog. Evol.  
  Volume 5 Issue 11 Pages 2189-2204  
  Keywords Endosymbiont; Evolution; Genomics; Wolbachia  
  Abstract Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequentialderivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedesaegypti mosquitoes, creating wMelPop-PGYP,which wassequenced after 4yearsin the insecthost. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.  
  Address Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17596653 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 February 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: O'Neill, S.L.; School of Biological Sciences, Monash University, Clayton, VIC, Australia; email: scott.oneill@monash.edu; Funding Details: NIH, National Institutes of Health Approved no  
  Call Number EcoFoG @ webmaster @ Serial 527  
Permanent link to this record
 

 
Author (down) Wernsdorfer, H.; Caron, H.; Gerber, S.; Cornu, G.; Rossi, V.; Mortier, F.; Gourlet-Fleury, S. openurl 
  Title Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes Type Journal Article
  Year 2011 Publication Conservation Genetics Abbreviated Journal Conserv. Genet.  
  Volume 12 Issue 1 Pages 15-29  
  Keywords Genetic diversity; Gene flow; Population dynamics; Simulation model; Conservation; Forest management  
  Abstract Determining how tropical tree populations subject to selective felling (logging) pressure may be conserved is a crucial issue for forest management and studying this issue requires a comprehensive understanding of the relationships between population demography and gene flow. We used a simulation model, SELVA, to study (1) the relative impact of demographic factors (juvenile mortality, felling regime) and genetic factors (selfing, number and location of fathers, mating success) on long-term genetic diversity; and (2) the impact of different felling regimes on population size versus genetic diversity. Impact was measured by means of model sensitivity analyses. Juvenile mortality had the highest impact on the number of alleles and genotypes, and on the genetic distance between the original and final populations. Selfing had the greatest impact on observed heterozygote frequency and fixation index. Other factors and interactions had only minor effects. Overall, felling had a greater impact on population size than on genetic diversity. Interestingly, populations under relatively low felling pressure even had a somewhat lower fixation index than undisturbed populations (no felling). We conclude that demographic processes such as juvenile mortality should be modelled thoroughly to obtain reliable long-term predictions of genetic diversity. Mortality in selfed and outcrossed progenies should be modelled explicitly by taking inbreeding depression into account. The modelling of selfing based on population rate appeared to be oversimplifying and should account for inter-tree variation. Forest management should pay particular attention to the regeneration capacities of felled species.  
  Address [Wernsdoerfer, Holger] Ctr INRA Nancy, INRA, Lab Etude Ressources Foret Bois LERFoB, UMR1092, F-54280 Champenoux, France, Email: holger.wernsdoerfer@cirad.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1566-0621 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285971900002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 289  
Permanent link to this record
 

 
Author (down) Wagner, F.H.; Herault, B.; Rossi, V.; Hilker, T.; Maeda, E.E.; Sanchez, A.; Lyapustin, A.I.; Galvão, L.S.; Wang, Y.; Aragão, L.E.O.C. pdf  url
doi  openurl
  Title Climate drivers of the Amazon forest greening Type Journal Article
  Year 2017 Publication PLoS ONE Abbreviated Journal  
  Volume 12 Issue 7 Pages e0180932  
  Keywords  
  Abstract Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.  
  Address College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 August 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 760  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: