toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barantal, S.; Roy, J.; Fromin, N.; Schimann, H.; Hattenschwiler, S. openurl 
  Title Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest Type Journal Article
  Year 2011 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 167 Issue 1 Pages 241-252  
  Keywords Amazonian rainforest; Chemical diversity; Decomposition; Functional diversity indices; Litter traits  
  Abstract Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.  
  Address (down) [Barantal, S; Roy, J; Fromin, N; Hattenschwiler, S] CEFE CNRS, UMR 5175, F-34293 Montpellier 5, France, Email: sandra.barantal@cefe.cnrs.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293914000024 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 336  
Permanent link to this record
 

 
Author Baraloto, C.; Couteron, P. openurl 
  Title Fine-scale Microhabitat Heterogeneity in a French Guianan Forest Type Journal Article
  Year 2010 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 42 Issue 4 Pages 420-428  
  Keywords canopy gap; geostatistics; light availability; microclimate; soil moisture; soil nutrients; topography  
  Abstract We examined fine-scale heterogeneity of environmental conditions in a primary rain forest in French Guiana to describe variation in microhabitats that plants may experience during establishment. We characterized both the range as well as the spatial structuring of 11 environmental factors important for seedling establishment in six hexagonal sampling grids, one each in gap and understory sites at three points representing the predominant geomorphic units in this primary forest. Each grid contained 37 sampling points separated by 31 cm-20 m. Monte-Carlo tests of semivariograms against complete spatial randomness indicated that for many variables in all six sampling grids, spatial dependence did not exceed 1 m. A principal component analysis of all sampling points revealed a lack of spatial microhabitat structure, rather than homogeneous patches associated with canopy structure or geomorphology. Our results suggest that ample fine-scale spatial heterogeneity exists to support the coexistence of plant species with differential abiotic requirements for regeneration.  
  Address (down) [Baraloto, Christopher] INRA, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279438900005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 55  
Permanent link to this record
 

 
Author Baraloto, C.; Marcon, E.; Morneau, F.; Pavoine, S.; Roggy, J.C. openurl 
  Title Integrating functional diversity into tropical forest plantation designs to study ecosystem processes Type Journal Article
  Year 2010 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 3 Pages 303  
  Keywords complementarity; ecosystem function; functional groups; leaf economics spectrum; nitrogen fixation; quadratic entropy  
  Abstract The elucidation of relationships between biodiversity and ecosystem processes has been limited by the definition of metrics of biodiversity and their integration into experimental design. Functional trait screening can strengthen the performance of these designs. We suggest the use of Rao's quadratic entropy to measure both functional diversity and phylogenetic diversity of species mixtures proposed for an experimental design, and demonstrate how they can provide complementary information. We also present an index assessing the statistical performance of these independent variables in different experimental designs. Measurement of independent variables as continuous vs. discrete variables reduces statistical performance, but improves the model by quantifying species differences masked by group assignments. To illustrate these advances, we present an example from a tropical forest tree community in which we screened 38 species for nine functional traits. The proposed TropiDEP design is based on the relative orthogonality of two multivariate trait axes defined using principal component analysis. We propose that independent variables describing functional diversity might be grouped to calculate independent variables describing suites of different traits with potentially different effects on particular ecosystem processes. In other systems these axes may differ from those reported here, yet the methods of analysis integrating functional and phylogenetic diversity into experimental design could be universal.  
  Address (down) [Baraloto, Christopher; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276507800004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 62  
Permanent link to this record
 

 
Author Baraloto, C.; Rabaud, S.; Molto, Q.; Blanc, L.; Fortunel, C.; Herault, B.; Davila, N.; Mesones, I.; Rios, M.; Valderrama, E.; Fine, P.V.A. openurl 
  Title Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests Type Journal Article
  Year 2011 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 17 Issue 8 Pages 2677-2688  
  Keywords carbon stocks; climate; flooded forest; forest structure; French Guiana; Peru; REDD; soil properties; tropical rainforest; white-sand forest; wood specific gravity  
  Abstract Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated aboveground biomass (AGB) in tropical forests varies two-fold, with little consensus on the relative importance of climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white-sand forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5-ha plots in 74 sites representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from 78 Mg ha(-1) in white-sand forest in Peru to 605 Mg ha(-1) in terra firme clay forest of French Guiana. Stand variables including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In contrast, soil and climate variables explained little overall variation in AGB, though they did co-vary to a limited extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats) supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many larger trees with high wood density. The weak direct relationships we observed between soil and climate variables and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be based on remote sensing methods to map stand structure.  
  Address (down) [Baraloto, Christopher; Rabaud, Suzanne; Fortunel, Claire; Rios, Marcos; Valderrama, Elvis] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292308300013 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 325  
Permanent link to this record
 

 
Author Baraloto, C.; Paine, C.E.T.; Patino, S.; Bonal, D.; Herault, B.; Chave, J. openurl 
  Title Functional trait variation and sampling strategies in species-rich plant communities Type Journal Article
  Year 2010 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 24 Issue 1 Pages 208-216  
  Keywords French Guiana; functional diversity; plant traits; specific leaf area; wood density; sampling design; tropical forest  
  Abstract P> Despite considerable interest in the application of plant functional traits to questions of community assembly and ecosystem structure and function, there is no consensus on the appropriateness of sampling designs to obtain plot-level estimates in diverse plant communities. We measured 10 plant functional traits describing leaf and stem morphology and ecophysiology for all trees in nine 1-ha plots in terra firme lowland tropical rain forests of French Guiana (N = 4709). We calculated, by simulation, the mean and variance in trait values for each plot and each trait expected under seven sampling methods and a range of sampling intensities. Simulated sampling methods included a variety of spatial designs, as well as the application of existing data base values to all individuals of a given species. For each trait in each plot, we defined a performance index for each sampling design as the proportion of resampling events that resulted in observed means within 5% of the true plot mean, and observed variance within 20% of the true plot variance. The relative performance of sampling designs was consistent for estimations of means and variances. Data base use had consistently poor performance for most traits across all plots, whereas sampling one individual per species per plot resulted in relatively high performance. We found few differences among different spatial sampling strategies; however, for a given strategy, increased intensity of sampling resulted in markedly improved accuracy in estimates of trait mean and variance. We also calculated the financial cost of each sampling design based on data from our 'every individual per plot' strategy and estimated the sampling and botanical effort required. The relative performance of designs was strongly positively correlated with relative financial cost, suggesting that sampling investment returns are relatively constant. Our results suggest that trait sampling for many objectives in species-rich plant communities may require the considerable effort of sampling at least one individual of each species in each plot, and that investment in complete sampling, though great, may be worthwhile for at least some traits.  
  Address (down) [Baraloto, Christopher; Patino, Sandra; Bonal, Damien] INRA, UMR Ecol Forets Guyane, F-97387 Kourou, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000273455500024 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 72  
Permanent link to this record
 

 
Author Baraloto, C.; Paine, C.E.T.; Poorter, L.; Beauchene, J.; Bonal, D.; Domenach, A.M.; Herault, B.; Patino, S.; Roggy, J.C.; Chave, J. openurl 
  Title Decoupled leaf and stem economics in rain forest trees Type Journal Article
  Year 2010 Publication Ecology Letters Abbreviated Journal Ecol. Lett.  
  Volume 13 Issue 11 Pages 1338-1347  
  Keywords Functional diversity; leaf economics; multiple factor analysis; plant strategies; plant traits; tropical forest; wood density  
  Abstract P>Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.  
  Address (down) [Baraloto, Christopher; Bonal, Damien; Patino, Sandra; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1461-023X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283157500002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 26  
Permanent link to this record
 

 
Author Barabe, D.; Lacroix, C.; Gibernau, M. openurl 
  Title Floral development of Urospatha: merosity and phylogeny in the Lasioideae (Araceae) Type Journal Article
  Year 2011 Publication Plant Systematics and Evolution Abbreviated Journal Plant Syst. Evol.  
  Volume 296 Issue 1-2 Pages 41-50  
  Keywords Inflorescence; Homeosis; Angiosperms; Systematic; Morphogenetic constraints  
  Abstract In this paper we study merosity in the genus Urospatha within the framework of a resolved phylogeny of the Araceae. We analyse how a transition from dimerous or tetramerous merosity to pentamerous or hexamerous merosity can occur developmentally in the Lasioideae. In Urospatha, initiation of floral primordia along the inflorescence is acropetal, while development of flowers is basipetal. This indicates the presence of two distinct phases in the development of the Urospatha inflorescence. The first phase corresponds to initiation of flowers and establishment of the phyllotactic pattern, and the second phase to differentiation of floral organs. Urospatha is characterized by the presence of trimerous, tetramerous, pentamerous and rarely hexamerous flowers. In all types of flowers, the stamens are closely associated and opposite to the tepals. Pentamerous flowers are formed by addition of a sector comprising a stamen and tepal. Likewise, in the case of hexamerous flowers, two sectors are added. In the Lasioideae, the increase in the number of tepals and stamens is linked with two developmental processes that have appeared independently in the subfamily: (1) addition of one or two stamen-petal sectors (Anaphyllopsis and Urospatha), and (2) independent increase in the number of tepals and stamens on whorls, more or less organized and inserted in alternate position (Dracontium). Tetramerous whorls as they occur in basal Lasioideae would be homologous to two dimerous whorls from an evolutionary point of view.  
  Address (down) [Barabe, D; Gibernau, M] CNRS UMR Ecol Forets Guyane 8172, F-97387 Kourou, France, Email: denis.barabe@umontreal.ca  
  Corporate Author Thesis  
  Publisher Springer Wien Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-2697 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294201300004 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 338  
Permanent link to this record
 

 
Author Audigeos, D.; Buonamici, A.; Belkadi, L.; Rymer, P.; Boshier, D.; Scotti-Saintagne, C.; Vendramin, G.G.; Scotti, I. openurl 
  Title Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species Type Journal Article
  Year 2010 Publication BMC Evolutionary Biology Abbreviated Journal BMC Evol. Biol.  
  Volume 10 Issue Pages 18  
  Keywords  
  Abstract Background: Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results: PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions: Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.  
  Address (down) [Audigeos, Delphine; Belkadi, Laurent; Scotti-Saintagne, Caroline; Scotti, Ivan] INRA, UMR EcoFoG Ecol Forets Guyane 0745, Kourou 97387, French Guiana, Email: ivan.scotti@cirad.fr  
  Corporate Author Thesis  
  Publisher BIOMED CENTRAL LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280369200002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 47  
Permanent link to this record
 

 
Author Andris, M.; Aradottir, G.I.; Arnau, G.; Audzijonyte, A.; Bess, E.C.; Bonadonna, F.; Bourdel, G.; Bried, J.; Bugbee, G.J.; Burger, P.A.; Chair, H.; Charruau, P.C.; Ciampi, A.Y.; Costet, L.; Debarro, P.J.; Delatte, H.; Dubois, M.P.; Eldridge, M.D.B.; England, P.R.; Enkhbileg, D.; Fartek, B.; Gardner, M.G.; Gray, K.A.; Gunasekera, R.M.; Hanley, S.J.; Havil, N.; Hereward, J.P.; Hirase, S.; Hong, Y.; Jarne, P.; Qi, J.F.; Johnson, R.N.; Kanno, M.; Kijima, A.; Kim, H.C.; Kim, K.S.; Kim, W.J.; Larue, E.; Lee, J.W.; Lee, J.H.; Li, C.H.; Liao, M.H.; Lo, N.; Lowe, A.J.; Malausa, T.; Male, P.J.G.; Marko, M.D.; Martin, J.F.; Messing, R.; Miller, K.J.; Min, B.W.; Myeong, J.I.; Nibouche, S.; Noack, A.E.; Noh, J.K.; Orivel, J.; Park, C.J.; Petro, D.; Prapayotin-Riveros, K.; Quilichini, A.; Reynaud, B.; Riginos, C.; Risterucci, A.M.; Rose, H.A.; Sampaio, I.; Silbermayr, K.; Silva, M.B.; Tero, N.; Thum, R.A.; Vinson, C.C.; Vorsino, A.; Vossbrinck, C.R.; Walzer, C.; White, J.C.; Wieczorek, A.; Wright, M. openurl 
  Title Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2010-31 July 2010 Type Journal Article
  Year 2010 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.  
  Volume 10 Issue 6 Pages 1106-1108  
  Keywords  
  Abstract This article documents the addition of 205 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Bagassa guianensis, Bulweria bulwerii, Camelus bactrianus, Chaenogobius annularis, Creontiades dilutus, Diachasmimorpha tryoni, Dioscorea alata, Euhrychiopsis lecontei, Gmelina arborea, Haliotis discus hannai, Hirtella physophora, Melanaphis sacchari, Munida isos, Thaumastocoris peregrinus and Tuberolachnus salignus. These loci were cross-tested on the following species: Halobaena caerulea, Procellaria aequinoctialis, Oceanodroma monteiroi, Camelus ferus, Creontiades pacificus, Dioscorea rotundata, Dioscorea praehensilis, Dioscorea abyssinica, Dioscorea nummularia, Dioscorea transversa, Dioscorea esculenta, Dioscorea pentaphylla, Dioscorea trifida, Hirtella bicornis, Hirtella glandulosa, Licania alba, Licania canescens, Licania membranaceae, Couepia guianensis and 7 undescribed Thaumastocoris species.  
  Address (down) [Andris, Malvina; Bried, Joel] Univ Acores, Ctr IMAR, Dept Oceanog & Pescas, P-9901862 Horta, Acores, Portugal, Email: editorial.office@molecol.com  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-098X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282876300024 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 28  
Permanent link to this record
 

 
Author Amusant, N.; Fournier, M.; Beauchene, J. openurl 
  Title Colour and decay resistance and its relationships in Eperua grandiflora Type Journal Article
  Year 2008 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 65 Issue 8 Pages 806  
  Keywords natural durability; colour; decay resistance; variability; heartwood; tropical wood  
  Abstract Eperua grandiflora, which is widely distributed in the French Guiana forest region, shows high variability in decay resistance. Further information concerning this wood quality parameter is necessary, but standard testing methods are complex and time-consuming. We assessed the use of colorimetry to determine durability in heartwood samples from a range of trees. Eperua grandiflora colour parameters were measured using a CIELAB system, revealing that the tree effect was greater than the radial position and height effects. The wood samples were exposed to Coriolus versicolor and Antrodia sp. according to two European standards (En 350-1 and XP CEN TS 15083-1). Eperua grandiflora is more susceptible to brown rot. These two standards did not give the same durability classes. The high variation in natural durability was due to the tree effect. These two properties were found to be correlated and the assessment also distinguished the extreme durability classes but they are not sufficient to classify the class of durability of this species.  
  Address (down) [Amusant, Nadine] CIRAD, PERSYT, UR Valorisat Bois Tropicaux, F-34538 Montpellier 5, France, Email: nadine.amusant@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000261431600006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 127  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: