toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Phillips, O.L.; van der Heijden, G.; Lewis, S.L.; Lopez-Gonzalez, G.; Aragao, L.E.O.C.; Lloyd, J.; Malhi, Y.; Monteagudo, A.; Almeida, S.; Davila, E.A.; Amaral, I.; Andelman, S.; Andrade, A.; Arroyo, L.; Aymard, G.; Baker, T.R.; Blanc, L.; Bonal, D.; de Oliveira, A.C.A.; Chao, K.J.; Cardozo, N.D.; da Costa, L.; Feldpausch, T.R.; Fisher, J.B.; Fyllas, N.M.; Freitas, M.A.; Galbraith, D.; Gloor, E.; Higuchi, N.; Honorio, E.; Jimenez, E.; Keeling, H.; Killeen, T.J.; Lovett, J.C.; Meir, P.; Mendoza, C.; Morel, A.; Vargas, P.N.; Patino, S.; Peh, K.S.H.; Cruz, A.P.; Prieto, A.; Quesada, C.A.; Ramirez, F.; Ramirez, H.; Rudas, A.; Salamao, R.; Schwarz, M.; Silva, J.; Silveira, M.; Slik, J.W.F.; Sonke, B.; Thomas, A.S.; Stropp, J.; Taplin, J.R.D.; Vasquez, R.; Vilanova, E. openurl 
  Title Drought-mortality relationships for tropical forests Type Journal Article
  Year 2010 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 187 Issue 3 Pages 631-646  
  Keywords Amazon; Borneo; drought; lags mortality; RAINFOR; trees; tropics  
  Abstract The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.  
  Address (down) [Phillips, Oliver L.; van der Heijden, Geertje; Lewis, Simon L.; Lopez-Gonzalez, Gabriela; Lloyd, Jon; Baker, Tim R.; Chao, Kuo-Jung; Feldpausch, Ted R.; Fyllas, Nikolaos M.; Gloor, Emanuel; Honorio, Euridice; Keeling, Helen; Quesada, Carlos A.; Schwarz, Michael] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England, Email: o.phillips@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280122500028 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 50  
Permanent link to this record
 

 
Author Phillips, O.L.; Aragao, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; Lopez-Gonzalez, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; van der Heijden, G.; Almeida, S.; Amaral, I.; Arroyo, L.; Aymard, G.; Baker, T.R.; Banki, O.; Blanc, L.; Bonal, D.; Brando, P.; Chave, J.; de Oliveira, A.C.A.; Cardozo, N.D.; Czimczik, C.I.; Feldpausch, T.R.; Freitas, M.A.; Gloor, E.; Higuchi, N.; Jimenez, E.; Lloyd, G.; Meir, P.; Mendoza, C.; Morel, A.; Neill, D.A.; Nepstad, D.; Patino, S.; Penuela, M.C.; Prieto, A.; Ramirez, F.; Schwarz, M.; Silva, J.; Silveira, M.; Thomas, A.S.; ter Steege, H.; Stropp, J.; Vasquez, R.; Zelazowski, P.; Davila, E.A.; Andelman, S.; Andrade, A.; Chao, K.J.; Erwin, T.; Di Fiore, A.; Honorio, E.; Keeling, H.; Killeen, T.J.; Laurance, W.F.; Cruz, A.P.; Pitman, N.C.A.; Vargas, P.N.; Ramirez-Angulo, H.; Rudas, A.; Salamao, R.; Silva, N.; Terborgh, J.; Torres-Lezama, A. openurl 
  Title Drought Sensitivity of the Amazon Rainforest Type Journal Article
  Year 2009 Publication Science Abbreviated Journal Science  
  Volume 323 Issue 5919 Pages 1344-1347  
  Keywords  
  Abstract Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.  
  Address (down) [Phillips, Oliver L.; Lewis, Simon L.; Lloyd, Jon; Lopez-Gonzalez, Gabriela; Peacock, Julie; Quesada, Carlos A.; van der Heijden, Geertje; Baker, Tim R.; Feldpausch, Ted R.; Gloor, Emanuel; Patino, Sandra; Schwarz, Michael; Chao, Kuo-Jung; Keeling, Helen] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England, Email: o.phillips@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher AMER ASSOC ADVANCEMENT SCIENCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000263876700042 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 120  
Permanent link to this record
 

 
Author Patino, S.; Lloyd, J.; Paiva, R.; Baker, T.R.; Quesada, C.A.; Mercado, L.M.; Schmerler, J.; Schwarz, M.; Santos, A.J.B.; Aguilar, A.; Czimczik, C.I.; Gallo, J.; Horna, V.; Hoyos, E.J.; Jimenez, E.M.; Palomino, W.; Peacock, J.; Pena-Cruz, A.; Sarmiento, C.; Sota, A.; Turriago, J.D.; Villanueva, B.; Vitzthum, P.; Alvarez, E.; Arroyo, L.; Baraloto, C.; Bonal, D.; Chave, J.; Costa, A.C.L.; Herrera, R.; Higuchi, N.; Killeen, T.; Leal, E.; Luizao, F.; Meir, P.; Monteagudo, A.; Neil, D.; Nunez-Vargas, P.; Penuela, M.C.; Pitman, N.; Priante, N.; Prieto, A.; Panfil, S.N.; Rudas, A.; Salomao, R.; Silva, N.; Silveira, M.; deAlmeida, S.S.; Torres-Lezama, A.; Vasquez-Martinez, R.; Vieira, I.; Malhi, Y.; Phillips, O.L. openurl 
  Title Branch xylem density variations across the Amazon Basin Type Journal Article
  Year 2009 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 6 Issue 4 Pages 545-568  
  Keywords  
  Abstract Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, rho(x), were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m(-3) for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m(-3) for an Aiouea sp. (Lauraceae) from Caxiuana, Central Para, Brazil. Analysis of variance showed significant differences in average rho(x) across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining “residual” variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.  
  Address (down) [Patino, S.; Aguilar, A.; Jimenez, E. M.; Vitzthum, P.; Penuela, M. C.] Univ Nacl Colombia, Inst Amazonico Invest Imani, Grp Ecol Ecosistemas Terrestres Trop, Leticia, Amazonas, Colombia, Email: sanpatiga@gmail.com  
  Corporate Author Thesis  
  Publisher COPERNICUS PUBLICATIONS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4170 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000265743200004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 115  
Permanent link to this record
 

 
Author Paine, C.E.T.; Stahl, C.; Courtois, E.A.; Patino, S.; Sarmiento, C.; Baraloto, C. openurl 
  Title Functional explanations for variation in bark thickness in tropical rain forest trees Type Journal Article
  Year 2010 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 24 Issue 6 Pages 1202-1210  
  Keywords bark thickness; fire ecology; flexural rigidity; herbivore defence; periderm; rhytidome; trunk respiration  
  Abstract P>1. The complex structure of tree bark reflects its many functions, which include structural support as well as defence against fire, pests and pathogens. Thick bark, however, might limit respiration by the living tissues of the trunk. Nevertheless, little research has addressed community-level variation in bark thickness, and to the best of our knowledge, no one has tested multiple hypotheses to explain variation in bark thickness. 2. We conducted an extensive survey of bark thickness within and among species of trees in the tropical rain forests of French Guiana. Trunk bark thickness increased by 1 center dot 2 mm per 10 cm increase in stem diameter, and varied widely at all taxonomic levels. Mean trunk bark thickness was 4 center dot 5 mm (range: 0 center dot 5-29 mm), which was less that found in two Amazonian rain forests in previous studies. This survey of bark thickness should be of use for forest management since tree survival through fire is strongly predicted by bark thickness. 3. We combined the survey data with multiple datasets to test several functional hypotheses proposed to explain variation in bark thickness. We found bark to provide an average of 10% of the flexural rigidity of tree stems, which was substantially less than that found in the only other study of bark stiffness. Bark thickness was uncorrelated with species' association with fire-prone habitats, suggesting that the influence of fire on bark thickness does not extend into moist Forests. There was also little evidence that bark thickness is affected by its function as a defence against herbivory. Nor was there evidence that thick bark limits trunk respiration. 4. A re-analysis of previously collected anatomical data indicated that variation in rhytidome (non-conducting outer bark) thickness explains much of the variation in overall bark thickness. As rhytidome is primarily involved in protecting the living tissues of the trunk, we suggest that bark thickness is driven mostly by its defensive function. 5. Functional explanations for the variation in bark thickness were not clear-cut. Nevertheless, this study provides a foundation for further investigation of the functional bases of bark in tropical trees.  
  Address (down) [Paine, Charles Eliot Timothy] ENGREF, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: timothy.paine@ieu.uzh.ch  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284589400005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 15  
Permanent link to this record
 

 
Author Paine, C.E.T.; Baraloto, C.; Chave, J.; Herault, B. openurl 
  Title Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests Type Journal Article
  Year 2011 Publication Oikos Abbreviated Journal Oikos  
  Volume 120 Issue 5 Pages 720-727  
  Keywords  
  Abstract Niche differentiation and ecological filtering are primary ecological processes that shape community assembly, but their relative importance remains poorly understood. Analyses of the distributions of functional traits can provide insight into the community structure generated by these processes. We predicted the trait distributions expected under the ecological processes of niche differentiation and environmental filtering, then tested these predictions with a dataset of 4672 trees located in nine 1-ha plots of tropical rain forest in French Guiana. Five traits related to leaf function (foliar N concentration, chlorophyll content, toughness, tissue density and specific leaf area), and three traits related to stem function (trunk sapwood density, branch sapwood density, and trunk bark thickness), as well as laminar surface area, were measured on every individual tree. There was far more evidence for environmental filtering than for niche differentiation in these forests. Furthermore, we contrasted results from species-mean and individual-level trait values. Analyses that took within-species trait variation into account were far more sensitive indicators of niche differentiation and ecological filtering. Species-mean analyses, by contrast, may underestimate the effects of ecological processes on community assembly. Environmental filtering appeared somewhat more intense on leaf traits than on stem traits, whereas niche differentiation affected neither strongly. By accounting for within-species trait variation, we were able to more properly consider the ecological interactions among individual trees and between individual trees and their environment. In so doing, our results suggest that the ecological processes of niche differentiation and environmental filtering may be more pervasive than previously believed.  
  Address (down) [Paine, C. E. Timothy] ENGREF, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: timothy.paine@ieu.uzh.ch  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-1299 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289740200008 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 313  
Permanent link to this record
 

 
Author Paine, C.E.T.; Harms, K.E. openurl 
  Title Quantifying the effects of seed arrival and environmental conditions on tropical seedling community structure Type Journal Article
  Year 2009 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 160 Issue 1 Pages 139-150  
  Keywords Community assembly; Dispersal; Niche differentiation; Seed addition; Variance partitioning  
  Abstract Though it is recognized that both stochastic and deterministic processes structure all communities, empirical assessments of their relative importance are rare, particularly within any single community. In this paper, we quantify the dynamic effects of dispersal assembly and niche assembly on the seedling layer in a diverse neotropical rain forest. The two theories make divergent predictions regarding the roles of seed arrival and environmental heterogeneity in generating community structure. Put simply, dispersal assembly posits that the stochasticity inherent to seed arrival structures communities, whereas niche assembly suggests that heterogeneity in post-dispersal environmental conditions is more important. We experimentally sowed 15,132 seeds of eight tree species at varying levels of density and diversity. Every six months we censused the seedlings that germinated and assessed the abiotic and biotic conditions of each plot. We assessed the density, diversity, and species composition of three nested subsets of the seedling layer: seedlings germinated from sown seeds, all seedlings germinated between July 2003 and 2004, and all woody seedlings. We partitioned the variance in density and diversity of each subset of the seedling layer into components representing seed-addition treatments and environmental conditions at 6- to 12-month intervals. Seed additions initially explained more variance in the density and diversity than did environmental heterogeneity for seven of eight sown species, but explained little variance in the density or diversity of the entire seedling layer. Species composition was better explained by seed-addition treatments than by environmental heterogeneity for all three subsets and in all time periods. Nevertheless, the variance in community structure explained by seed-addition treatments declined over the two years following germination, presaging shifts in the relative importance of dispersal assembly and niche assembly. Our study quantifies how dispersal assembly and niche assembly may vary among the components of an ecological community and shift dynamically through time.  
  Address (down) [Paine, C. E. Timothy; Harms, Kyle E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA, Email: timothy.paine@ecofog.gf  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000265100500014 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 116  
Permanent link to this record
 

 
Author Paine, C.E.T.; Harms, K.E.; Ramos, J. openurl 
  Title Supplemental irrigation increases seedling performance and diversity in a tropical forest Type Journal Article
  Year 2009 Publication Journal of Tropical Ecology Abbreviated Journal J. Trop. Ecol.  
  Volume 25 Issue Pages 171-180  
  Keywords diversity; Estacion Biologica Los Amigos; habitat filtering; palms; Peru; precipitation; seasonality; seedling recruitment  
  Abstract Diversity is positively correlated with water availability at global, continental and regional scales. With the objective of better understanding the mechanisms that drive these relationships. we investigated the degree to which variation in water availability affects the performance (recruitment, growth a rid survival) of juvenile trees. Precipitation was supplemented throughout two dry seasons in a seasonal moist forest in south-eastern Peru. Supplementing precipitation by 160 mm mo(-1), we increased soil moisture by 17%. To generate seedling communities or known species composition, we sowed 3840 seeds of 12 species. We monitored the fates of the 554 seedlings recruited from the sown seeds. as well as 1856 older non-sown seedlings (10 cm <= height < 50 cm), and 2353 saplings (> 1 m tall). Watering significantly enhanced young seedling growth and survival, increasing stern density and diversity. Watering diminished the recruitment of species associated with upland forests, but increased the survival of both upland- and lowland-associated species. Though supplemental watering increased the growth of older seedlings. their density and diversity were unaffected. Sapling performance was insensitive to watering. We infer that variation in dry-season water availability may affect seedling community structure by differentially affecting recruitment and increasing overall survival. These results suggest that differential seedling recruitment and survival may contribute to the observed relationships between water availability, habitat associations and patterns of tree species richness.  
  Address (down) [Paine, C. E. Timothy; Harms, Kyle E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA, Email: timothy.paine@ecofog.gf  
  Corporate Author Thesis  
  Publisher CAMBRIDGE UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000264212400006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 118  
Permanent link to this record
 

 
Author Paine, C.E.T.; Harms, K.E.; Schnitzer, S.A.; Carson, W.P. openurl 
  Title Weak competition among tropical tree seedlings: Implications for species coexistence Type Journal Article
  Year 2008 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 40 Issue 4 Pages 432-440  
  Keywords Brosimum alicastrum; competitive irrelevance; maintenance of biodiversity; Matisia cordata; resource competition; Panama; Peru; Pouteria reticulata; zone of influence  
  Abstract The intensity of competition among forest tree seedlings is poorly understood, but has important ramifications for their recruitment and for the maintenance of species diversity. Intense competition among seedlings could allow competitively dominant species to exclude subordinate species. Alternatively, the low density and small stature of forest tree seedlings could preclude intense interseedling competition. In this case, other processes, such as size-asymmetric competition with adults, interactions with consumers, or neutral dynamics would prevail as those structuring the forest understory. We tested the intensity of, and potential for, intraspecific competition among tree seedlings of three species (Brosimum alicastrum, Matisia cordata, and Pouteria reticulata) in two Neotropical rain forests. We reduced stem densities by up to 90 percent and monitored individual growth and survival rates for up to 24 mo. Individual growth and survival rates were generally unrelated to stem density. Contrary to the predicted behavior of intensely competing plant populations, the distribution of individual heights did not become more left-skewed with time for any species, regardless of plot density; i.e., excesses of short, suppressed individuals did not accumulate in high-density plots. We further measured the overlap of zones of influence (ZOIs) to assess the potential for resource competition. Seedling ZOIs overlapped only slightly in extremely dense monodominant plots, and even less in ambient-density plots of mixed composition. Our results thus suggest that interseedling competition was weak. Given the low density of tree seedlings in Neotropical forests, we infer that resource competition among seedlings may be irrelevant to their recruitment.  
  Address (down) [Paine, C. E. Timothy; Harms, Kyle E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA, Email: cetpaine@gmail.com  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257717500006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 134  
Permanent link to this record
 

 
Author Orivel, J.; Corbara, B.; Dejean, A. openurl 
  Title Constraints and adaptation in the arboreal life of ants Type Journal Article
  Year 2010 Publication Biofutur Abbreviated Journal Biofutur  
  Volume 315 Issue Pages 34-37  
  Keywords  
  Abstract  
  Address (down) [Orivel, Jerome] CNRS, UMR Ecol Forets Guyane, Kourou 97379, French Guiana  
  Corporate Author Thesis  
  Publisher ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0294-3506 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284987300004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 17  
Permanent link to this record
 

 
Author Orivel, J.; Leroy, C. openurl 
  Title The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae) Type Journal Article
  Year 2011 Publication Myrmecological News Abbreviated Journal Myrmecol. News  
  Volume 14 Issue Pages 73-85  
  Keywords Ant-plant interactions; epiphytes; mutualisms; Neotropics; Paleotropics; phytotelm; parabiosis; seed dispersal; review  
  Abstract Mutualistic interactions between ants and plants are important features of many ecosystems, and they can be divided into three main categories: dispersal and protective mutualisms and myrmecotrophy. In both the Neotropics and the Southeastern Asian Paleotropics, ant gardens (AGs), a particular type of ant-plant interaction, are frequent. To initiate AGs, ants integrate the seeds of certain epiphyte species into the carton of their nest. The development of the plants leads to the formation of a cluster of epiphytes rooted in the carton. They have been defined as one of the most complex associations between ants and plants known because of the plurispecific, but also specialized nature of the association involving several phylogenetically-distant ant and plant species. The aim of this review is to provide a synthesis of the diversity and ecology of AGs, including the outcomes experienced by the partners in the interaction and the direct and indirect impacts ant-garden ants have on the plant and arthropod communities.  
  Address (down) [Orivel, Jerome; Leroy, Celine] CNRS, UMR Ecol Forets Guyane, Kourou 97379, French Guiana, Email: jerome.orivel@ecofog.gf  
  Corporate Author Thesis  
  Publisher OESTERREICHISCHE GESELL ENTOMOFAUNISTIK, C/O NATURHISTOR MUSEUM WIEN Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-4136 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286844100009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 292  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: