toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? Type Journal Article
  Year 2020 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 6 Pages 1183-1193  
  Keywords canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana  
  Abstract Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation  
  Address (down) UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 948  
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
  Year 2020 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 4 Pages 608-615  
  Keywords branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae  
  Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation  
  Address (down) UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 960  
Permanent link to this record
 

 
Author Parelle, J.; Zapater, M.; Scotti-Saintagne, C.; Kremer, A.; Jolivet, Y.; Dreyer, E.; Brendel, O. openurl 
  Title Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns Type Journal Article
  Year 2007 Publication Plant Cell and Environment Abbreviated Journal Plant Cell Environ.  
  Volume 30 Issue 4 Pages 422-434  
  Keywords allelic substitution effect; correlation clustering; epinasty; hypertrophied lenticel; multi-environment model; root hypoxia  
  Abstract Quercus robur L. is a mid-European broadleaved tree species that grows readily on temporary waterlogged soils. An experiment aiming to identify potential markers of tolerance to waterlogging in this species and to assess the degree of genetic control over the corresponding traits was conducted. Quantitative trait loci (QTL) were assessed in an F-1 progeny for responses to waterlogging, and the relevance of the observed traits as markers of tolerance was investigated using a precise description of the time course of their expression. Five significant QTL involved in the response to waterlogging were identified. In particular, QTL were detected for the development of hypertrophied lenticels and for the degree of leaf epinasty, but not for the formation of adventitious roots. A multi-environment QTL model allowed a detailed description of the time course (7 weeks) of the allelic substitution effect of some of these QTL. Correlation clustering identified significant clusters of QTL, at inter-trait as well as at intra-trait level. These clusters suggest the occurrence of a genetically controlled response cascade to waterlogging.  
  Address (down) UHP, UMR 1137, Ctr INRA Nancy, F-54280 Champenoux, France, Email: brendel@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000244419700005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 219  
Permanent link to this record
 

 
Author Clair, B.; Ruelle, J.; Beauchene, J.; Prevost, M.F.; Fournier, M. openurl 
  Title Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer Type Journal Article
  Year 2006 Publication IAWA Journal Abbreviated Journal IAWA J.  
  Volume 27 Issue 3 Pages 329-338  
  Keywords gelatinous layer; G-layer; French Guyana; tropical rain forest; tension wood; wood anatomy  
  Abstract Wood samples were taken from the upper and lower sides of 21 naturally tilted trees from 18 families of angiosperms in the tropical rain forest in French Guyana. The measurement of growth stresses ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile stressed wood on the upper side, called tension wood, and lower tensile stressed wood on the lower side, called opposite wood. Eight species had tension wood fibres with a distinct gelatinous layer (G-layer). The distribution of gelatinous fibres varied from species to species. One of the species, Casearia javitensis (Flacourtiaceae), showed a peculiar multilayered secondary wall in its reaction wood. Comparison between the stress level and the occurrence of the G-layer indicates that the G-layer is not a key factor in the production of high tensile stressed wood.  
  Address (down) UAG, INRA, ENGREF, CIRAD CNRS,ECOFOG,UMR Ecol Forets Guyane, F-97379 Kourou, Guyana, Email: clair@lmgc.univ-montp2.fr  
  Corporate Author Thesis  
  Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-1541 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000240542400008 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 176  
Permanent link to this record
 

 
Author Ruelle, J.; Clair, B.; Beauchene, J.; Prevost, M.F.; Fournier, M. openurl 
  Title Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria Type Journal Article
  Year 2006 Publication IAWA Journal Abbreviated Journal IAWA J.  
  Volume 27 Issue 4 Pages 341-376  
  Keywords tension wood; opposite wood; tropical rain forest; vessels; wood anatomy; wood fibre  
  Abstract The anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood specimens were taken from the upper and lower sides of naturally tilted trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend. At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea).  
  Address (down) UAG, ENGREF,UMR Ecol Forets Guyane, INRA,ECOFOG, CIRAD,CNRS, F-97379 Kourou, Guyana, Email: ruelle_j@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-1541 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000242437400001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 171  
Permanent link to this record
 

 
Author Dejean, A.; Corbara, B.; Céréghino, R.; Leponce, M.; Roux, O.; Rossi, V.; Delabie, J.H.C.; Compin, A. doi  openurl
  Title Traits allowing some ant species to nest syntopically with the fire ant Solenopsis saevissima in its native range Type Journal Article
  Year 2015 Publication Insect Science Abbreviated Journal Insect Science  
  Volume 22 Issue 2 Pages 289-294  
  Keywords Ant community; Fire ants; Invasive species; Solenopsis saevissima; Species coexistence; Supercoloniality  
  Abstract Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other. © 2013 Institute of Zoology, Chinese Academy of Sciences.  
  Address (down) U.P.A. Laboratório de Mirmecologia, Convênio UESC/CEPLAC, C.P. 7Itabuna, Bahia, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 594  
Permanent link to this record
 

 
Author Esquivel-Muelbert, A.; Phillips, O.L.; Brienen, R.J.W.; Fauset, S.; Sullivan, M.J.P.; Baker, T.R.; Chao, K.-J.; Feldpausch, T.R.; Gloor, E.; Higuchi, N.; Houwing-Duistermaat, J.; Lloyd, J.; Liu, H.; Malhi, Y.; Marimon, B.; Marimon Junior, B.H.; Monteagudo-Mendoza, A.; Poorter, L.; Silveira, M.; Torre, E.V.; Dávila, E.A.; del Aguila Pasquel, J.; Almeida, E.; Loayza, P.A.; Andrade, A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.; Arroyo, L.; Aymard C, G.A.; Baisie, M.; Baraloto, C.; Camargo, P.B.; Barroso, J.; Blanc, L.; Bonal, D.; Bongers, F.; Boot, R.; Brown, F.; Burban, B.; Camargo, J.L.; Castro, W.; Moscoso, V.C.; Chave, J.; Comiskey, J.; Valverde, F.C.; da Costa, A.L.; Cardozo, N.D.; Di Fiore, A.; Dourdain, A.; Erwin, T.; Llampazo, G.F.; Vieira, I.C.G.; Herrera, R.; Honorio Coronado, E.; Huamantupa-Chuquimaco, I.; Jimenez-Rojas, E.; Killeen, T.; Laurance, S.; Laurance, W.; Levesley, A.; Lewis, S.L.; Ladvocat, K.L.L.M.; Lopez-Gonzalez, G.; Lovejoy, T.; Meir, P.; Mendoza, C.; Morandi, P.; Neill, D.; Nogueira Lima, A.J.; Vargas, P.N.; de Oliveira, E.A.; Camacho, N.P.; Pardo, G.; Peacock, J.; Peña-Claros, M.; Peñuela-Mora, M.C.; Pickavance, G.; Pipoly, J.; Pitman, N.; Prieto, A.; Pugh, T.A.M.; Quesada, C.; Ramirez-Angulo, H.; de Almeida Reis, S.M.; Rejou-Machain, M.; Correa, Z.R.; Bayona, L.R.; Rudas, A.; Salomão, R.; Serrano, J.; Espejo, J.S.; Silva, N.; Singh, J.; Stahl, C.; Stropp, J.; Swamy, V.; Talbot, J.; ter Steege, H.; Terborgh, J.; Thomas, R.; Toledo, M.; Torres-Lezama, A.; Gamarra, L.V.; van der Heijden, G.; van der Meer, P.; van der Hout, P.; Martinez, R.V.; Vieira, S.A.; Cayo, J.V.; Vos, V.; Zagt, R.; Zuidema, P.; Galbraith, D. doi  openurl
  Title Tree mode of death and mortality risk factors across Amazon forests Type Journal Article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 11 Issue 5515 Pages  
  Keywords bioclimatology; carbon sink; ecological modeling; growth; holistic approach; mortality; mortality risk; risk factor; survival; trade-off; tropical forest; article; climate; controlled study; forest; growth rate; human; mortality rate; mortality risk; survival; biological model; biomass; Brazil; carbon sequestration; ecology; ecosystem; environmental monitoring; growth, development and aging; proportional hazards model; risk factor; tree; tropic climate; Amazonia; carbon dioxide; Biomass; Brazil; Carbon Dioxide; Carbon Sequestration; Ecology; Ecosystem; Environmental Monitoring; Forests; Models, Biological; Proportional Hazards Models; Risk Factors; Trees; Tropical Climate  
  Abstract The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted—modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth–survival trade-off in driving tropical tree mortality. © 2020, The Author(s).  
  Address (down) Tropenbos International, Wageningen, Netherlands  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20411723 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 945  
Permanent link to this record
 

 
Author Rifflet, A.; Gavalda, S.; Téné, N.; Orivel, J.; Leprince, J.; Guilhaudis, L.; Génin, E.; Vétillard, A.; Treilhou, M. url  openurl
  Title Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum Type Journal Article
  Year 2012 Publication Peptides Abbreviated Journal  
  Volume 38 Issue 2 Pages 363-370  
  Keywords Amp; Ant venom; Antibacterial peptide; Bicarinalin; Esi-Ms/Ms; Staphylococcus; Tetramorium bicarinatum  
  Abstract A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens. © 2012 Elsevier Inc.  
  Address (down) ThermoFisher Scientific, 16 avenue du Québec, 91963 Courtaboeuf, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 January 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 456  
Permanent link to this record
 

 
Author Nixon, S.; Agwa, A.; Robinson, S.; Walker, A.; Touchard, A.; Schroeder, C.; Vetter, I.; Kotze, A.C.; Herzig, V.; King, G.F. doi  openurl
  Title Discovery and characterisation of novel peptides from Amazonian stinging ant venoms with antiparasitic activity Type Journal Article
  Year 2020 Publication Toxicon Abbreviated Journal Toxicon  
  Volume 177 Issue 1 Pages S60  
  Keywords  
  Abstract  
  Address (down) The Institute for Molecular Bioscience, The University of Queensland, Australia; CSIRO Agriculture and Food, Australia; CNRS, UMR Ecologie des forêts de Guyane, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18793150 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 973  
Permanent link to this record
 

 
Author Ploton, P.; Barbier, N.; Couteron, P.; Antin, C.M.; Ayyappan, N.; Balachandran, N.; Barathan, N.; Bastin, J.-F.; Chuyong, G.; Dauby, G.; Droissart, V.; Gastellu-Etchegorry, J.-P.; Kamdem, N.G.; Kenfack, D.; Libalah, M.; Mofack, G., II; Momo, S.T.; Pargal, S.; Petronelli, P.; Proisy, C.; Réjou-Méchain, M.; Sonké, B.; Texier, N.; Thomas, D.; Verley, P.; Zebaze Dongmo, D.; Berger, U.; Pélissier, R. url  doi
openurl 
  Title Toward a general tropical forest biomass prediction model from very high resolution optical satellite images Type Journal Article
  Year 2017 Publication Remote Sensing of Environment Abbreviated Journal  
  Volume 200 Issue Pages 140-153  
  Keywords Canopy structure; Forest carbon; Fourier transform; Lacunarity; Passive optical imagery; Redd; Texture; Tropical forests  
  Abstract Very high spatial resolution (VHSR) optical satellite imagery has shown good potential to provide non-saturating proxies of tropical forest aboveground biomass (AGB) from the analysis of canopy texture, for instance through the Fourier Transform Textural Ordination method. Empirical case studies however showed that the relationship between Fourier texture features and forest AGB varies across forest types and regions of the world, limiting model transferability. A better understanding of the biophysical mechanisms on which canopy texture – forest AGB relation relies is a prerequisite to move toward broad scale applications. Here we simulated VHSR optical canopy scenes in identical sun-sensor geometry for 279 1-ha tropical forest inventory plots distributed across the tropics. Our aim was to assess the respective merits and complementarity of two types of texture analysis techniques (i.e. Fourier and lacunarity) on a set of forests with contrasted structure and geographical origin, and develop a general texture-based approach for tropical forest AGB mapping. Across forests, Fourier texture captured a gradient of stands mean crown size reflecting well the progressive changes in stand structure throughout forest aggradation phase (e.g. Pearson's r = − 0.42 with basal area) while lacunarity texture captured a gradient of canopy openness (, i.e. Pearson's r = − 0.57 with stand gap fraction). Both types of texture indices were highly complementary for predicting forest AGB at the global level (so-called FL-model). The residual error of the FL-model was structured across sites and could be partially captured with a bioclimatic proxy, further improving the performance of the global model (so-called FLE-model) and reducing site-level biases. The FLE model was tested on a set of real Pleiades images covering a mosaic of high-biomass forests in the Congo basin (mean AGB over 49 field plots: 359 ± 98 Mg ha− 1), leading to a significant relationship (R2 = 0.47 on validation data) with reasonable error levels (< 25% rRMSE). The increasing availability of VHSR optical sensors (such as from constellations of small satellite platforms) raises the possibility of routine repeated imaging of the world's tropical forests and suggests that texture-based analyses could become an essential tool in international efforts to monitor carbon emissions from deforestation and forest degradations (REDD +). © 2017 Elsevier Inc.  
  Address (down) Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 September 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 766  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: