toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ruiz-González, M.X.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Carrión, A.D.A.; Orivel, J. pdf  url
doi  openurl
  Title Do host plant and associated ant species affect microbial communities in myrmecophytes? Type Journal Article
  Year 2019 Publication Insects Abbreviated Journal Insects  
  Volume 10 Issue 11 Pages 391  
  Keywords Allomerus decemarticulatus; Allomerus octoarticulatus; Azteca sp; Cf; Cordia nodosa; Depilis; Domatia; Hirtella physophora; Microbial diversity  
  Abstract (up) Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.  
  Address Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning, Guangxi 530005, China  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20754450 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 November 2019; Correspondence Address: Ruiz-González, M.X.; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Ecuador; email: marioxruizgonzalez@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 896  
Permanent link to this record
 

 
Author Ruiz-Gonzalez, M.X.; Male, P.J.G.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Quilichini, A.; Orivel, J. openurl 
  Title Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants Type Journal Article
  Year 2011 Publication Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 7 Issue 3 Pages 475-479  
  Keywords ant-fungus association; Cordia nodosa; Chaetothyriales; Hirtella physophora; myrmecophyte; population structure  
  Abstract (up) Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.  
  Address [Leroy, Celine; Dejean, Alain; Quilichini, Angelique; Orivel, Jerome] CNRS, UMR Ecol Forets Guyane 8172, F-97379 Kourou, France, Email: jerome.orivel@ecofog.gf  
  Corporate Author Thesis  
  Publisher Royal Soc Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290515100044 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 317  
Permanent link to this record
 

 
Author Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. pdf  url
openurl 
  Title The biochemical toxin arsenal from ant venoms Type Journal Article
  Year 2016 Publication Toxins Abbreviated Journal Toxins  
  Volume 8 Issue 1 Pages 30  
  Keywords Alkaloids; Ant venom; Enzymes; Formic acid; Peptides; Toxins; Venom biochemistry  
  Abstract (up) Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. © 2016 by the authors; licensee MDPI, Basel, Switzerland.  
  Address Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 656  
Permanent link to this record
 

 
Author Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. url  openurl
  Title Diversity of peptide toxins from stinging ant venoms Type Journal Article
  Year 2014 Publication Toxicon Abbreviated Journal Toxicon  
  Volume 92 Issue Pages 166-178  
  Keywords Ant venom; Chemotaxonomy; Disulfide linkage; Peptides; Venom biochemistry  
  Abstract (up) Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents.  
  Address Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, 118 Route de NarbonneToulouse, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00410101 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 December 2014; Coden: Toxia; Correspondence Address: Nicholson, G.M.; Neurotoxin Research Group, School of Medical and Molecular Biosciences, University of Technology SydneyAustralia Approved no  
  Call Number EcoFoG @ webmaster @ Serial 568  
Permanent link to this record
 

 
Author Leponce, Maurice ; Corbara, Bruno ; Delabie, Jacques H.C. ; Orivel, Jérome ; Aberlenc, Henri-Pierre ; Bail, Johannes ; Barrios, Hector ; Campos, Ricardo I. ; Cardoso do Nascimento, Ivan ; Compin, Arthur ; Didham, Raphaël K. ; Floren, Andreas ; Medianero, Enrique ; Ribeiro, Sérvio P. ; Roisin, Yves ; Schmidl, Juergen ; Tishechkin, Alexey K. ; Winchester, Neville N. ; Basset, Yves ; Dejean, Alain doi  openurl
  Title Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest Type Journal Article
  Year 2021 Publication Basic and Applied Abbreviated Journal  
  Volume 56 Issue Pages 32-44  
  Keywords  
  Abstract (up) Ants are a major ecological group in tropical rainforests. Few studies in the Neotropics have documented the distribution of ants from the ground to the canopy, and none have included the understorey. A previous analysis of an intensive arthropod study in Panama, involving 11 sampling methods, showed that the factors influencing ant β diversity (i.e., changes in assemblage composition) were, in decreasing order of importance, the vertical (height), temporal (season), and horizontal (geographic distance) dimensions. In the present study, we went one step further and aimed (1) to identify the best sampling methods to study the entire ant assemblage across the three strata, (2) to test if all strata show a similar horizontal β diversity and (3) to analyze the functional structure of the entire ant assemblage. We identified 405 ant species from 11 subfamilies and 68 genera. Slightly more species were sampled in the canopy than on the ground; they belonged to distinct sub-assemblages. The understorey fauna was mainly a mixture of species found in the other two strata. The horizontal β diversity between sites was similar for the three strata. About half of the ant species foraged in two (29%) or three (25%) strata. A single method, aerial flight interception traps placed alongside tree trunks, acting as arboreal pitfall traps, collected half of the species and reflected the vertical stratification. Using the functional traits approach, we observed that generalist species with mid-sized colonies were by far the most numerous (31%), followed by ground- or litter-dwelling species, either specialists (20%), or generalists (16%), and arboreal species, either generalists (19%) or territorially dominant (8%), and finally army ants (5%). Our results reinforce the idea that a proper understanding of the functioning of ant assemblages requires the inclusion of arboreal ants in survey programs.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1026  
Permanent link to this record
 

 
Author Leponce, Maurice ; Dejean, Alain ; Mottl, Ondrej ; Klimes, Petr doi  openurl
  Title Rapid assessment of the three-dimensional distribution of dominant arboreal ants in tropical forests Type Journal Article
  Year 2021 Publication Insect Conservation and Diversity Abbreviated Journal  
  Volume 14 Issue 4 Pages 426-438  
  Keywords  
  Abstract (up) Ants are omnipresent in tropical forests, especially territorially dominant arboreal ants whose territories are spatially segregated forming ‘ant mosaics’. These ecologically important species are rarely used in conservation monitoring because of the difficulty in collecting them. We developed a standardised baitline protocol to study the distribution of dominant ants on canopy trees and also a procedure to objectively define species dominance, even in unknown ant assemblages.
Besides eliminating the need to climb trees, this protocol allows live arboreal ant specimens to be sampled at different heights. Behavioural aggressiveness assays between the collected workers provide data on the three-dimensional distribution of colonies and on interactions between species. We compared the results of the behavioural tests to those from null models.
In the New Guinean lowland forest studied, we show that the canopy was either shared by multiple territorial species or inhabited by a single species with a large territory. The baitline protocol collected up to half of the arboreal ant species found in a felling census. However, the proportion of species collected at baits decreased with the increasing spatial dominance of single territorial species.
Behavioural observations used in the protocol allowed a more efficient detection of ant mosaics than null models. Territorially dominant ants were active on both understorey and canopy trees.
The protocol is fast and easy to replicate. It is a potential tool for understanding and monitoring the spatiotemporal dynamics of arboreal ant assemblages and can detect populous colonies, including those of invasive species
 
  Address  
  Corporate Author Thesis  
  Publisher Royal Entomological Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1047  
Permanent link to this record
 

 
Author Leponce, M.;Delabie, J.H.C.;Orivel, J.;Jacquemin, J.;Calvo Martin, M.;Dejean, A. doi  openurl
  Title Tree-dwelling ant survey (Hymenoptera, Formicidae) in Mitaraka, French Guiana Type Journal Article
  Year 2019 Publication Zoosystema Abbreviated Journal  
  Volume 40 Issue sp1 Pages 163-179  
  Keywords  
  Abstract (up) Ants constitute a substantial part of the arthropod biomass in rainforests. Most studies have focused on ground-dwelling ants, which constitute almost half of the diversity of the ant assemblage. We report here the results of the first survey of tree-dwelling ants in French Guiana on a plateau and in a swamp palm forest (Euterpe oleracea Mart.) in the Mitaraka Mountains. We were interested in seeing the effect of topography and geographic distance on species richness and composition and to gather information on the species distribution on tree trunks. The fauna of Mitaraka was compared with one from a site 350 km distant (Petit Saut). In total 105 trees were sampled (30, 30, 45 in the plateau and the swamp forests of Mitaraka, and in Petit Saut plateau forest, respectively). Arboreal ants were attracted using tuna and honey baits spread along a rope reaching an upper branch, except for the palm swamp forest where the baits were only placed at 2 m high. A total of 34, 13 and 22 species were observed in these three respective sites. Six of these species are new records for French Guiana. In Mitaraka Camponotus femoratus (Fabricius, 1804) and Crematogaster leviorLongino, 2003 co-occurred on trees (parabiotic association) and were among the most common species, along with Crematogaster tenuiculaForel, 1904 which was found on other trees (species exclusion). The Mitaraka Mountains appeared more species rich and had a species composition distinct from Petit Saut. Topography also influenced ant species composition. Almost half of the species collected by the baitline method were exclusively foraging in the canopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 883  
Permanent link to this record
 

 
Author Bertelsmeier, C.; Avril, A.; Blight, O.; Confais, A.; Diez, L.; Jourdan, H.; Orivel, J.; Saint Germès, N.; Courchamp, F. doi  openurl
  Title Different behavioural strategies among seven highly invasive ant species Type Journal Article
  Year 2015 Publication Biological Invasions Abbreviated Journal  
  Volume 17 Issue 8 Pages 2491-2503  
  Keywords  
  Abstract (up) Ants figure prominently among the worst invasive species because of their enormous ecological and economic impacts. However, it remains to be investigated which species would be behaviourally dominant when confronted with another invasive ant species, should two species be introduced in the same area. In the future, many regions might have suitable environmental conditions for several invasive ant species, as predicted under climate change scenarios. Here, we explored interactions among several highly invasive ant species, which have been shown to have overlapping suitable areas. The aim of this study was to evaluate the performance in interference competition of seven of the world’s worst invasive ant species (Anoplolepis gracilipes, Paratrechina longicornis, Myrmica rubra, Linepithema humile, Lasius neglectus, Wasmannia auropunctata and Pheidole megacephala). We conducted pairwise confrontations, testing the behaviour of each species against each of the six other species (in total 21 dyadic confrontations). We used single worker confrontations and group interactions of 10 versus 10 individuals to establish a dominance hierarchy among these invasive ant species. We discovered two different behavioural strategies among these invasive ants: three species displayed evasive or indifferent behaviour when individuals or groups were confronted (A. gracilipes, Pa. longicornis, M. rubra), while the four remaining species were highly aggressive during encounters and formed a linear dominance hierarchy. These findings contrast with the widespread view that invasive ants form a homogeneous group of species displaying the ‘invasive syndrome’, which includes generally aggressive behaviour. The dominance hierarchy among the four aggressive species may be used to predict the outcome of future competitive interactions under some circumstances. Yet, the existence of several behavioural strategies renders such a prediction less straightforward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-1464 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Bertelsmeier2015 Serial 650  
Permanent link to this record
 

 
Author Aili, S.R.; Touchard, A.; Petitclerc, F.; Dejean, A.; Orivel, J.; Padula, M.P.; Escoubas, P.; Nicholson, G.M. doi  openurl
  Title Combined Peptidomic and Proteomic Analysis of Electrically Stimulated and Manually Dissected Venom from the South American Bullet Ant Paraponera clavata Type Journal Article
  Year 2017 Publication Journal of Proteome Research Abbreviated Journal J. Proteome Res.  
  Volume 16 Issue 3 Pages 1339-1351  
  Keywords  
  Abstract (up) Ants have evolved venoms rich in peptides and proteins used for predation, defense, and communication. However, they remain extremely understudied due to the minimal amount of venom secreted by each ant. The present study investigated the differences in the proteome and peptidome of the venom from the bullet ant, Paraponera clavata. Venom samples were collected from a single colony either by manual venom gland dissection or by electrical stimulation and were compared using proteomic methods. Venom proteins were separated by 2D-PAGE and identified by nanoLC-ESI-QTOF MS/MS. Venom peptides were initially separated using C18 reversed-phase high-performance liquid chromatography, then analyzed by MALDI-TOF MS. The proteomic analysis revealed numerous proteins that could be assigned a biological function (total 94), mainly as toxins, or roles in cell regulation and transport. This investigation found that ca. 73% of the proteins were common to venoms collected by the two methods. The peptidomic analysis revealed a large number of peptides (total 309) but with <20% shared by the two collection methods. There was also a marked difference between venoms obtained by venom gland dissection from different ant colonies. These findings demonstrate the rich composition and variability of P. clavata venom.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1535-3893 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 746  
Permanent link to this record
 

 
Author de Aguiar, H.J.A.C.; Barros, L.A.C.; Silveira, L.I.; Petitclerc, F.; Etienne, S.; Orivel, J. pdf  url
doi  openurl
  Title Cytogenetic data for sixteen ant species from North-eastern Amazonia with phylogenetic insights into three subfamilies Type Journal Article
  Year 2020 Publication Comparative Cytogenetics Abbreviated Journal Comp. Cytogenet.  
  Volume 14 Issue 1 Pages 43-60  
  Keywords Biodiversity; Formicidae; Karyotype; Neotropical ants  
  Abstract (up) Ants play essential roles in most terrestrial ecosystems and may be considered pests for agriculture and agroforestry. Recent morphological and molecular data have challenged conventional ant phylogeny and the interpretation of karyotypic variations. Existing Neotropical ant cytogenetic data focus on Atlantic rainforest species, and provide evolutionary and taxonomic insight. However, there are data for only 18 Amazonian species. In this study, we describe the karyotypes of 16 ant species belonging to 12 genera and three subfamilies, collected in the Brazilian state of Amapa, and in French Guiana. The karyotypes of six species are described for the first time, including that of the South American genus Allomerus Mayr, 1878. The karyotype of Crematogaster Lund, 1831 is also described for the first time for the New World. For other species, extant data for geographically distinct populations was compared with our own data, e.g. for the leafcutter ants Acromyrmex balzani (Emery, 1890) and Atta sexdens (Linnaeus, 1758). The information obtained for the karyotype of Dolichoderus imitator Emery, 1894 differs from extant data from the Atlantic forest, thereby highlighting the importance of population cytogenetic approaches. This study also emphasizes the need for good chromosome preparations for studying karyotype structure.  
  Address INRA, UMR EcoFoG, AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, Kourou Cedex, 97379, France  
  Corporate Author Thesis  
  Publisher Pensoft Publishers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19930771 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 917  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: