|   | 
Details
   web
Records
Author Leba, L.-J.; Musset, L.; Pelleau, S.; Estevez, Y.; Birer, C.; Briolant, S.; Witkowski, B.; Ménard, D.; Delves, M.J.; Legrand, E.; Duplais, C.; Popovici, J.
Title Use of Plasmodium falciparum culture-adapted field isolates for in vitro exflagellation-blocking assay Type Journal Article
Year 2015 Publication Malaria Journal Abbreviated Journal Malaria Journal
Volume 14 Issue Pages 234
Keywords
Abstract (up) Background: A major requirement for malaria elimination is the development of transmission-blocking interventions. In vitro transmission-blocking bioassays currently mostly rely on the use of very few Plasmodium falciparum reference laboratory strains isolated decades ago. To fill a piece of the gap between laboratory experimental models and natural systems, the purpose of this work was to determine if culture-adapted field isolates of P. falciparum are suitable for in vitro transmission-blocking bioassays targeting functional maturity of male gametocytes: exflagellation. Methods: Plasmodium falciparum isolates were adapted to in vitro culture before being used for in vitro gametocyte production. Maturation was assessed by microscopic observation of gametocyte morphology over time of culture and the functional viability of male gametocytes was assessed by microscopic counting of exflagellating gametocytes. Suitability for in vitro exflagellation-blocking bioassays was determined using dihydroartemisinin and methylene blue. Results: In vitro gametocyte production was achieved using two isolates from French Guiana and two isolates from Cambodia. Functional maturity of male gametocytes was assessed by exflagellation observations and all four isolates could be used in exflagellation-blocking bioassays with adequate response to methylene blue and dihydroartemisinin. Conclusion: This work shows that in vitro culture-adapted P. falciparum field isolates of different genetic background, from South America and Southeast Asia, can successfully be used for bioassays targeting the male gametocyte to gamete transition, exflagellation. © 2015 Leba et al.
Address Department of Life Sciences, Imperial College, London, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 16 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 612
Permanent link to this record
 

 
Author Dejean, A.; Grangier, J.; Leroy, C.; Orivel, J.
Title Host plant protection by arboreal ants: looking for a pattern in locally induced responses Type Journal Article
Year 2008 Publication Evolutionary Ecology Research Abbreviated Journal Evol. Ecol. Res.
Volume 10 Issue 8 Pages 1217-1223
Keywords aggressiveness; ant-plant relationships; Azteca; biotic defence; induced responses
Abstract (up) Background: Among arboreal ants, both territorially dominant species and plant-ants (e.g. species associated with myrmecophytes or plants housing them in hollow structures) protect their host trees against defoliators. Yet, locally induced responses, or the recruitment of nest-mates when a worker discovers it wound on its host-tree, were only noted in plant-ants. We wondered whether this might be due to the examination of the phenomenon being restricted to only six plant-ant species belonging to four genera. Based on the ant genus Azteca, a Neotropical group of arboreal species, we compared five species. The territorially dominant, carton-nester A. chartifex, three plant-ant species [A. alfari and A. ovaticeps associated with myrmecophitic Cecropia (Cecropiaceae), and A. bequaerti associated with Tococa guianensis (Melastomataceae)], and A. schimperi thought to be a temporary social parasite of true Cecropia ants. Methods: We artificially inflicted wounds to the foliage of the host tree of the different ant species. We then compared the number of workers on wounded versus control leaves. Results: We noted a locally induced response in the three plant-ant species as well as in the territorially dominant species, but very slightly so in A. schimperi.
Address [Grangier, Julien; Orivel, Jerome] Univ Toulouse 2, Lab Evolut & Diversite Biol, CNRS, UMR 5174, Toulouse, France, Email: alain.dejean@wanadoo.fr
Corporate Author Thesis
Publisher EVOLUTIONARY ECOLOGY LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1522-0613 ISBN Medium
Area Expedition Conference
Notes ISI:000264041000008 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 119
Permanent link to this record
 

 
Author Gonzalez, M.A.; Baraloto, C.; Engel, J.; Mori, S.A.; Petronelli, P.; Riera, B.; Roger, A.; Thebaud, C.; Chave, J.
Title Identification of Amazonian Trees with DNA Barcodes Type Journal Article
Year 2009 Publication PLoS One Abbreviated Journal PLoS One
Volume 4 Issue 10 Pages e7483
Keywords
Abstract (up) Background: Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Methodology/Principal Findings: Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. Conclusion/Significance: We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.
Address
Corporate Author Thesis
Publisher PUBLIC LIBRARY SCIENCE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes ISI:000270880700009 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 189
Permanent link to this record
 

 
Author Piponiot, C.; Cabon, A.; Descroix, L.; Dourdain, A.; Mazzei, L.; Ouliac, B.; Rutishauser, E.; Sist, P.; Herault, B.
Title A methodological framework to assess the carbon balance of tropical managed forests Type Journal Article
Year 2016 Publication Carbon Balance and Management Abbreviated Journal Carbon Balance and Management
Volume 11 Issue 1 Pages
Keywords Amazonia; Carbon cycle; Error propagation; Production forests; Selective logging
Abstract (up) Background: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. Results: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. Conclusions: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions. © 2016 The Author(s).
Address CNRS, UMR EcoFoG, AgroParisTech, Inra, Université de la Guyane, Université des Antilles, Cirad, Campus Agronomique, Kourou, French Guiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 688
Permanent link to this record
 

 
Author Bompy, F.; Lequeue, G.; Imbert, D.; Dulormne, M.
Title Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species Type Journal Article
Year 2014 Publication Plant and Soil Abbreviated Journal Plant and Soil
Volume 380 Issue 1 Pages 399-413
Keywords Acclimation; Avicennia germinans; Hypersalinity; Laguncularia racemosa; Leaf gas exchange; Rhizophora mangle; Salt stress
Abstract (up) Background: Micro-tidal wetlands are subject to strong seasonal variations of soil salinity that are likely to increase in amplitude according to climate model predictions for the Caribbean. Whereas the effects of constant salinity levels on the physiology of mangrove species have been widely tested, little is known about acclimation to fluctuations in salinity. Aims and methods: The aim of this experiment was to characterize the consequences of the rate of increase in salinity (slow versus fast) and salinity fluctuations over time versus constant salt level. Seedling mortality, growth, and leaf gas exchange of three mangrove species, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle were investigated in semicontrolled conditions at different salt levels (0, 685, 1025, and 1370 mM NaCl). Results: Slow salinity increase up to 685 mM induced acclimation, improving the salt tolerance of A. germinans and L. racemosa, but had no effect on R. mangle. During fluctuations between 0 and 685 mM, A. germinans and R. mangle were not affected by a salinity drop to zero, whereas L. racemosa took advantage of the brief freshwater episode as shown by the durable improvement of photosynthesis and biomass production. Conclusions: This study provides new insights into physiological resistance and acclimation to salt stress. We show that seasonal variations of salinity may affect mangrove seedlings' morphology and physiology as much as annual mean salinity. Moreover, more severe dry seasons due to climate change may impact tree stature and species composition in mangroves through higher mortality rates and physiological disturbance at the seedling stage. © 2014 Springer International Publishing Switzerland.
Address EA 926 DYNECAR, UFR des Sciences Exactes et Naturelles, Université des Antilles et de la Guyane, BP 592, 97 159 Pointe-à-Pitre cedex, Guadeloupe (F.W.I.), France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :7; Export Date: 7 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 726
Permanent link to this record
 

 
Author Hérault, B.; Piponiot, C.
Title Key drivers of ecosystem recovery after disturbance in a neotropical forest: Long-term lessons from the Paracou experiment, French Guiana Type Journal Article
Year 2018 Publication Forest Ecosystems Abbreviated Journal Forest Ecosystems
Volume 5 Issue 2 Pages
Keywords Amazonia; Carbon fluxes; Climate change; Ecological resilience; Ecosystem modeling; Tropical forests
Abstract (up) Background: Natural disturbance is a fundamental component of the functioning of tropical rainforests let to natural dynamics, with tree mortality the driving force of forest renewal. With ongoing global (i.e. land-use and climate) changes, tropical forests are currently facing deep and rapid modifications in disturbance regimes that may hamper their recovering capacity so that developing robust predictive model able to predict ecosystem resilience and recovery becomes of primary importance for decision-making: (i) Do regenerating forests recover faster than mature forests given the same level of disturbance? (ii) Is the local topography an important predictor of the post-disturbance forest trajectories? (iii) Is the community functional composition, assessed with community weighted-mean functional traits, a good predictor of carbon stock recovery? (iv) How important is the climate stress (seasonal drought and/or soil water saturation) in shaping the recovery trajectory? Methods: Paracou is a large scale forest disturbance experiment set up in 1984 with nine 6.25 ha plots spanning on a large disturbance gradient where 15 to 60% of the initial forest ecosystem biomass were removed. More than 70,000 trees belonging to ca. 700 tree species have then been censused every 2 years up today. Using this unique dataset, we aim at deciphering the endogenous (forest structure and composition) and exogenous (local environment and climate stress) drivers of ecosystem recovery in time. To do so, we disentangle carbon recovery into demographic processes (recruitment, growth, mortality fluxes) and cohorts (recruited trees, survivors). Results: Variations in the pre-disturbance forest structure or in local environment do not shape significantly the ecosystem recovery rates. Variations in the pre-disturbance forest composition and in the post-disturbance climate significantly change the forest recovery trajectory. Pioneer-rich forests have slower recovery rates than assemblages of late-successional species. Soil water saturation during the wet season strongly impedes ecosystem recovery but not seasonal drought. From a sensitivity analysis, we highlight the pre-disturbance forest composition and the post-disturbance climate conditions as the primary factors controlling the recovery trajectory. Conclusions: Highly-disturbed forests and secondary forests because they are composed of a lot of pioneer species will be less able to cope with new disturbance. In the context of increasing tree mortality due to both (i) severe droughts imputable to climate change and (ii) human-induced perturbations, tropical forest management should focus on reducing disturbances by developing Reduced Impact Logging techniques.
Address Université de la Guyane, UMR EcoFoG (AgroParistech, Cirad, CNRS, Inra, Université des Antilles), Campus Agronomique, Kourou, French Guiana, 97310, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :1; Export Date: 1 September 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 812
Permanent link to this record
 

 
Author Ogeron, C.; Odonne, G.; Cristinoi, A.; Engel, J.; Grenand, P.; Beauchene, J.; Clair, B.; Davy, D.
Title Palikur traditional roundwood construction in eastern French Guiana: Ethnobotanical and cultural perspectives Type Journal Article
Year 2018 Publication Journal of Ethnobiology and Ethnomedicine Abbreviated Journal Journal of Ethnobiology and Ethnomedicine
Volume 14 Issue 28 Pages
Keywords Amazonia; Annonaceae; Architecture; Non-timber forest products; Oyapock; Palikur; Sapotaceae; Traditional technological knowledge
Abstract (up) Background: Palikur Amerindians live in the eastern part of French Guiana which is undergoing deep-seated changes due to the geographical and economic opening of the region. So far, Palikur's traditional ecological knowledge is poorly documented, apart from medicinal plants. The aim of this study was to document ethnobotanical practices related to traditional construction in the region. Methods: A combination of qualitative and quantitative methods was used. Thirty-nine Palikur men were interviewed in three localities (Saint-Georges de l'Oyapock, Regina and Trois-Palétuviers) between December 2013 and July 2014. Twenty-four inventories of wood species used in traditional buildings were conducted in the villages, as well as ethnobotanical walks in the neighboring forests, to complete data about usable species and to determine Linnaean names. Results: After an ethnographic description of roundwood Palikur habitat, the in situ wood selection process of Palikur is precisely described. A total of 960 roundwood pieces were inventoried in situ according to Palikur taxonomy, of which 860 were beams and rafters, and 100 posts in 20 permanent and 4 temporary buildings. Twenty-seven folk species were identified. Sixty-three folk species used in construction were recorded during ethnobotanical walks. They correspond to 263 botanical species belonging to 25 families. Posts in permanent buildings were made of yawu (Minquartia guianensis) (51%) and wakap (Vouacapoua americana) (14%). Beams and rafters were made of wood from Annonaceae (79%) and Lecythidaceae (13%) families. The most frequently used species were kuukumwi priye (Oxandra asbeckii), kuukumwi seyne (Pseudoxandra cuspidata), and pukuu (Xylopia nitida and X. cayennensis). Conclusions: Although the Palikur's relationship with their habitat is undergoing significant changes, knowledge about construction wood is still very much alive in the Oyapock basin. Many people continue to construct traditional buildings alongside modern houses, using a wide array of species described here for the first time, along with the techniques used.
Address Université des Antilles, Université de Guyane, CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, Cirad, INRA, Kourou, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 7 May 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 802
Permanent link to this record
 

 
Author Dezecache, C.; Salles, J.-M.; Herault, B.
Title Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries Type Journal Article
Year 2018 Publication Carbon Balance Manage. Abbreviated Journal
Volume 13 Issue 21 Pages
Keywords Baseline; Deforestation; Guiana Shield; HFLD countries; Redd+; Reference level; Spatial modelling
Abstract (up) Background: REDD+ is being questioned by the particular status of High Forest/Low Deforestation countries. Indeed, the formulation of reference levels is made difficult by the confrontation of low historical deforestation records with the forest transition theory on the one hand. On the other hand, those countries might formulate incredibly high deforestation scenarios to ensure large payments even in case of inaction. Results: Using a wide range of scenarios within the Guiana Shield, from methods involving basic assumptions made from past deforestation, to explicit modelling of deforestation using relevant socio-economic variables at the regional scale, we show that the most common methodologies predict huge increases in deforestation, unlikely to happen given the existing socio-economic situation. More importantly, it is unlikely that funds provided under most of these scenarios could compensate for the total cost of avoided deforestation in the region, including social and economic costs. Conclusion: This study suggests that a useful and efficient international mechanism should really focus on removing the underlying political and socio-economic forces of deforestation rather than on hypothetical result-based payments estimated from very questionable reference levels.
Address
Corporate Author Thesis
Publisher BioMed Central Ltd. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17500680 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 837
Permanent link to this record
 

 
Author Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Arroyo, L.; Aymard, G.A.; Bánki, O.S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R.G.A.; Camargo, J.L.C.; Castilho, C.V.; Chama, V.; Chao, K.J.; Chave, J.; Comiskey, J.A.; Valverde, F.C.; da Costa, L.; de Oliveira, E.A.; Di Fiore, A.; Erwin, T.L.; Fauset, S.; Forsthofer, M.; Galbraith, D.R.; Grahame, E.S.; Groot, N.; Herault, B.; Higuchi, N.; Honorio Coronado, E.N.; Keeling, H.; Killeen, T.J.; Laurance, W.F.; Laurance, S.; Licona, J.; Magnusson, W.E.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza, C.; Neill, D.A.; Nogueira, E.M.; Núñez, P.; Pallqui Camacho, N.C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Peña-Claros, M.; Pickavance, G.C.; Pitman, N.C.A.; Poorter, L.; Prieto, A.; Quesada, C.A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomão, R.P.; Schwarz, M.; Silva, N.; Silva-Espejo, J.E.; Silveira, M.; Stropp, J.; Talbot, J.; ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, R.; van der Heijden, G.M.F.; van der Hout, P.; Guimarães Vieira, I.C.; Vieira, S.A.; Vilanova, E.; Vos, V.A.; Zagt, R.J.; Alarcon, A.; Amaral, I.; Camargo, P.B.; Brown, I.F.; Blanc, L.; Burban, B.; Cardozo, N.; Engel, J.; de Freitas, M.A.; de Oliveira, A.; Fredericksen, T.S.; Ferreira, L.; Hinojosa, N.T.; Jimenez, E.; Lenza, E.; Mendoza, C.; Mendoza Polo, I.; Peña Cruz, A.; Peñuela, M.C.; Petronelli, P.; Singh, J.; Maquirino, P.; Serano, J.; Sota, A.; Oliveira dos Santos, C.; Ybarnegaray, J.; Ricardo, J.
Title Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions Type Journal Article
Year 2017 Publication Carbon Balance and Management Abbreviated Journal Carbon Balance and Management
Volume 12 Issue 1 Pages
Keywords Amazonia; Carbon balance; Carbon sink; Climate change; Ecosystem service; Land use change; Sequestration; Tropical forests
Abstract (up) Background: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. Results: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Conclusions: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities. © 2017 The Author(s).
Address University of Leeds, School of Geography, Leeds, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 20 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 735
Permanent link to this record
 

 
Author Brousseau, L.; Tinaut, A.; Duret, C.; Lang, T.; Garnier-Gere, P.; Scotti, I.
Title High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species Type Journal Article
Year 2014 Publication BMC Genomics Abbreviated Journal BMC Genomics
Volume 15 Issue 238 Pages 1-13
Keywords 454-Pyrosequencing; Polymorphism discovery; Tropical rainforest tree species
Abstract (up) Background: The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. Results: In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs.Conclusion: The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species. © 2014 Brousseau et al.; licensee BioMed Central Ltd.
Address BIOGECO, UMR 1202, University of Bordeaux, F-33400 Talence, France
Corporate Author Thesis
Publisher BioMed Central Ltd. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14712164 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 18 April 2014; Source: Scopus; Art. No.: 238; Coden: Bgmee; Language of Original Document: English; Correspondence Address: Scotti, I.; INRA, UMR 0745 EcoFoG, Campus agronomique BP 709, F-97387 Cedex, France; email: ivan.scotti@ecofog.gf Approved no
Call Number EcoFoG @ webmaster @ Serial 537
Permanent link to this record