toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Imbert, D. pdf  url
doi  openurl
  Title Hurricane disturbance and forest dynamics in east Caribbean mangroves Type Journal Article
  Year 2018 Publication Ecosphere Abbreviated Journal  
  Volume 9 Issue 7 Pages e02231  
  Keywords Caribbean; forest recovery; high-energy storms; mangrove; resilience; resistance; Special Feature: High-Energy Storms  
  Abstract (up) Despite low plant diversity and structural simplicity, mangroves offer various ecosystem services to local human communities, including sheltering coastal social-ecological systems from high-energy storm damage. The expected increasing intensity of hurricanes due to climate change raises questions concerning the capacity of mangroves to resist and recover from such disturbances. Herein, this study contributes to a better understanding of (1) the relation between storm intensity and damage to mangrove vegetation, (2) the contributions of species-specific as well as stand-specific components of mangrove vegetation to ecosystem resistance, and (3) the recovery of pre-hurricane forest structure through time. The first two issues have been addressed using a stand-level approach implemented at two east Caribbean mangrove sites in response to three storm events. The third was addressed through a 23-yr survey of forest recovery following the passage of a high-energy storm across one of the two study sites. Generally, hurricane damage was primarily controlled by wind velocity, followed by the hydro-geomorphic context of mangrove forests and species-specific composition, respectively. The relationship between damage to trees and wind velocity evidenced a sigmoidal trend, with a maximum slope at a wind velocity averaging 130 and 180 km/h for higher vs. lower canopy stands, respectively. The red mangrove, Rhizophora mangle, was significantly less resistant to hurricane damage than was the black mangrove, Avicennia germinans. Unlike the fringe and scrub stands, inner, tall-canopy stands fully recovered by the end of the study (23 yr). These stands were more resilient because of their growth performances. Finally, the time for east Caribbean mangroves to recover from high-energy storms seems to fall within the range of the average return time of such disturbances. This may prevent such ecosystems from ever reaching a steady state.  
  Address Laboratoire de Biologie Végétale, UMR EcoFoG, BP 592, Université des Antilles, Pointe-à-Pitre Cedex, 97159, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 September 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 819  
Permanent link to this record
 

 
Author Dézerald, O.; Srivastava, D.S.; Céréghino, R.; Carrias, J.-F.; Corbara, B.; Farjalla, V.F.; Leroy, C.; Marino, N.A.C.; Piccoli, G.C.O.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; González, A.L. url  doi
openurl 
  Title Functional traits and environmental conditions predict community isotopic niches and energy pathways across spatial scales Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal  
  Volume 32 Issue 10 Pages 2423-2434  
  Keywords energy pathways; environmental heterogeneity; food webs; functional biogeography; functional diversity; isotopic niche; metacommunity; trophic structure  
  Abstract (up) Despite ongoing research in food web ecology and functional biogeography, the links between food web structure, functional traits and environmental conditions across spatial scales remain poorly understood. Trophic niches, defined as the amount of energy and elemental space occupied by species and food webs, may help bridge this divide. Here, we ask how the functional traits of species, the environmental conditions of habitats and the spatial scale of analysis jointly determine the characteristics of trophic niches. We used isotopic niches as a proxy of trophic niches, and conducted analyses at spatial scales ranging from local food webs and metacommunities to geographically distant sites. We sampled aquatic macroinvertebrates from 104 tank bromeliads distributed across five sites from Central to South America and compiled the macroinvertebrates’ functional traits and stable isotope values (δ15N and δ13C). We assessed how isotopic niches within each bromeliad were influenced by the functional trait composition of their associated invertebrates and environmental conditions (i.e., habitat size, canopy cover [CC] and detrital concentration [DC]). We then evaluated whether the diet of dominant predators and, consequently, energy pathways within food webs reflected functional and environmental changes among bromeliads across sites. At last, we determined the extent to which the isotopic niches of macroinvertebrates within each bromeliad contributed to the metacommunity isotopic niches within each site and compared these metacommunity-level niches over biogeographic scales. At the bromeliad level, isotopic niches increased with the functional richness of species in the food web and the DC in the bromeliad. The diet of top predators tracked shifts in prey biomass along gradients of CC and DC. Bromeliads that grew under heterogeneous CC displayed less trophic redundancy and therefore combined to form larger metacommunity isotopic niches. At last, the size of metacommunity niches depended on within-site heterogeneity in CC. Our results suggest that the trophic niches occupied by food webs can predictably scale from local food webs to metacommunities to biogeographic regions. This scaling process is determined by both the functional traits of species and heterogeneity in environmental conditions. A plain language summary is available for this article. © 2018 The Authors. Functional Ecology © 2018 British Ecological Society  
  Address Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 22 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 828  
Permanent link to this record
 

 
Author Carrias, J.-F.; Gerphagnon, M.; Rodríguez-Pérez, H.; Borrel, G.; Loiseau, C.; Corbara, B.; Céréghino, R.; Mary, I.; Leroy, C. url  doi
openurl 
  Title Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem Type Journal Article
  Year 2020 Publication FEMS microbiology ecology Abbreviated Journal FEMS Microbiol. Ecol.  
  Volume 96 Issue 4 Pages fiaa045  
  Keywords 16S rRNA gene; amplicon sequencing; bacterial diversity; community ecology; decomposition; ecological succession  
  Abstract (up) Despite the growing number of investigations on microbial succession during the last decade, most of our knowledge on primary succession of bacteria in natural environments comes from conceptual models and/or studies of chronosequences. Successional patterns of litter-degrading bacteria remain poorly documented, especially in undisturbed environments. Here we conducted an experiment with tank bromeliads as natural freshwater microcosms to assess major trends in bacterial succession on two leaf-litter species incubated with or without animal exclusion. We used amplicon sequencing and a co-occurrence network to assess changes in bacterial community structure according to treatments. Alpha-diversity and community complexity displayed the same trends regardless of the treatments, highlighting that primary succession of detrital-bacteria is subject to resource limitation and biological interactions, much like macro-organisms. Shifts in bacterial assemblages along the succession were characterized by an increase in uncharacterized taxa and potential N-fixing bacteria, the latter being involved in positive co-occurrence between taxa. These findings support the hypothesis of interdependence between taxa as a significant niche-based process shaping bacterial communities during the advanced stage of succession. © FEMS 2020.  
  Address AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 15746941 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 14 April 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 926  
Permanent link to this record
 

 
Author Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. pdf  url
doi  openurl
  Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 11 Issue 3 Pages 367  
  Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry  
  Abstract (up) Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email: florent.taureau@univ-nantes.fr; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no  
  Call Number EcoFoG @ webmaster @ Serial 861  
Permanent link to this record
 

 
Author Maggia, Marie-Eugénie ; Decaëns, Thibaud ; Lapied, Emmanuel ; Dupont, Lise ; Roy, Virginie ; Schimann, Heidy ; Orivel, Jérome ; Murienne, Jérôme ; Baraloto, Christophier ; Cottenie, Karl ; Steinke, Dirk doi  openurl
  Title At each site its diversity: DNA barcoding reveals remarkable earthworm diversity in neotropical rainforests of French Guiana Type Journal Article
  Year 2021 Publication Applied Soil Ecology Abbreviated Journal  
  Volume 164 Issue Pages 103932  
  Keywords DNA barcoding Tropical rainforest Community ecology Diversity level Sampling methods  
  Abstract (up) Despite their recognized essential role in soil, earthworms in tropical environments are still understudied. The aim of this study was to re-evaluate the diversity at the regional scale, as well as to investigate the environmental and spatial drivers of earthworm communities. We sampled earthworm communities across a range of habitats at six localities in French Guiana using three different sampling methods. We generated 1675 DNA barcodes and combined them with data from a previous study. Together, all sequences clustered into 119 MOTUs which were used as proxy to assess species richness. Only two MOTUs were common between the six localities and 20.2% were singletons, showing very high regional species richness and a high number of rare species. A canonical redundancy analysis was used to identify key drivers of the earthworm community composition. The RDA results and beta-diversity calculations both show strong species turnover and a strong spatial effect, resulting from dispersal limitations that are responsible for the current community composition. Sampling in different microhabitats allowed the discovery of 23 MOTUs that are exclusively found in decaying trunks and epiphytes, highlighting hidden diversity of earthworms outside of soil.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0929-1393 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1055  
Permanent link to this record
 

 
Author Csilléry, K.; Lalague, H.; Vendramin, G.G.; González-Martínez, S.C.; Fady, B.; Oddou-Muratorio, S. url  openurl
  Title Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations Type Journal Article
  Year 2014 Publication Molecular Ecology Abbreviated Journal Molecular Ecology  
  Volume 23 Issue 19 Pages 4696-4708  
  Keywords abiotic stress; budburst phenology; FST outlier; gene network; haplotype; Ohta's test; variance components of linkage disequilibrium  
  Abstract (up) Detecting signatures of selection in tree populations threatened by climate change is currently a major research priority. Here, we investigated the signature of local adaptation over a short spatial scale using 96 European beech (Fagus sylvatica L.) individuals originating from two pairs of populations on the northern and southern slopes of Mont Ventoux (south-eastern France). We performed both single and multilocus analysis of selection based on 53 climate-related candidate genes containing 546 SNPs. FST outlier methods at the SNP level revealed a weak signal of selection, with three marginally significant outliers in the northern populations. At the gene level, considering haplotypes as alleles, two additional marginally significant outliers were detected, one on each slope. To account for the uncertainty of haplotype inference, we averaged the Bayes factors over many possible phase reconstructions. Epistatic selection offers a realistic multilocus model of selection in natural populations. Here, we used a test suggested by Ohta based on the decomposition of the variance of linkage disequilibrium. Overall populations, 0.23% of the SNP pairs (haplotypes) showed evidence of epistatic selection, with nearly 80% of them being within genes. One of the between gene epistatic selection signals arose between an FST outlier and a nonsynonymous mutation in a drought response gene. Additionally, we identified haplotypes containing selectively advantageous allele combinations which were unique to high or low elevations and northern or southern populations. Several haplotypes contained nonsynonymous mutations situated in genes with known functional importance for adaptation to climatic factors.  
  Address CIFOR-INIA, Forest Research Centre, Carretera de La Coruña km 7.5Madrid 28040, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 January 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 579  
Permanent link to this record
 

 
Author Fichaux, M.; Béchade, B.; Donald, J.; Weyna, A.; Delabie, J.H.C.; Murienne, J.; Baraloto, C.; Orivel, J. url  doi
openurl 
  Title Habitats shape taxonomic and functional composition of Neotropical ant assemblages Type Journal Article
  Year 2019 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 189 Issue 2 Pages 501-513  
  Keywords Formicidae; Functional diversity; Habitat filtering; Rainforest; Traits; Formicidae  
  Abstract (up) Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.  
  Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, United States  
  Corporate Author Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 863  
Permanent link to this record
 

 
Author Wernsdorfer, H.; Caron, H.; Gerber, S.; Cornu, G.; Rossi, V.; Mortier, F.; Gourlet-Fleury, S. openurl 
  Title Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes Type Journal Article
  Year 2011 Publication Conservation Genetics Abbreviated Journal Conserv. Genet.  
  Volume 12 Issue 1 Pages 15-29  
  Keywords Genetic diversity; Gene flow; Population dynamics; Simulation model; Conservation; Forest management  
  Abstract (up) Determining how tropical tree populations subject to selective felling (logging) pressure may be conserved is a crucial issue for forest management and studying this issue requires a comprehensive understanding of the relationships between population demography and gene flow. We used a simulation model, SELVA, to study (1) the relative impact of demographic factors (juvenile mortality, felling regime) and genetic factors (selfing, number and location of fathers, mating success) on long-term genetic diversity; and (2) the impact of different felling regimes on population size versus genetic diversity. Impact was measured by means of model sensitivity analyses. Juvenile mortality had the highest impact on the number of alleles and genotypes, and on the genetic distance between the original and final populations. Selfing had the greatest impact on observed heterozygote frequency and fixation index. Other factors and interactions had only minor effects. Overall, felling had a greater impact on population size than on genetic diversity. Interestingly, populations under relatively low felling pressure even had a somewhat lower fixation index than undisturbed populations (no felling). We conclude that demographic processes such as juvenile mortality should be modelled thoroughly to obtain reliable long-term predictions of genetic diversity. Mortality in selfed and outcrossed progenies should be modelled explicitly by taking inbreeding depression into account. The modelling of selfing based on population rate appeared to be oversimplifying and should account for inter-tree variation. Forest management should pay particular attention to the regeneration capacities of felled species.  
  Address [Wernsdoerfer, Holger] Ctr INRA Nancy, INRA, Lab Etude Ressources Foret Bois LERFoB, UMR1092, F-54280 Champenoux, France, Email: holger.wernsdoerfer@cirad.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1566-0621 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285971900002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 289  
Permanent link to this record
 

 
Author Salas-Lopez, A.; Talaga, S.; Lalague, H. doi  openurl
  Title The discovery of devil's gardens: An ant-plant mutualism in the cloud forests of the Eastern Amazon Type Journal Article
  Year 2016 Publication Journal of Tropical Ecology Abbreviated Journal Journal of Tropical Ecology  
  Volume 32 Issue 3 Pages 264-268  
  Keywords ant-plant interactions; biogeography; cloud forest; Cordia nodosa; mutualism, Myrmelachista; refuge hypothesis  
  Abstract (up) Devil's gardens are one of the most remarkable mutualistic associations between ants and plants. Myrmelachista ants eliminate all vegetation from around their host plants, resulting in wide forest clearings which have intrigued scientists from the start. Despite their noticeability, here we report the discovery of devil's gardens in remote highland cloud forests of the Eastern Amazon, more than 2000 km away from their nearest known analogues in Western Amazonia. We describe the ecological characteristics of these gardens and consider what factors could have produced the geographic isolation of Eastern Amazonian devil's gardens. Three hypotheses are investigated: (1) the host plant distribution restricts the distribution of the mutualism, (2) the ecological tolerances of Myrmelachista explain the isolation, and (3) the devil's gardens of the Eastern Amazon constitute relicts from ancient forest refugia. The distribution of the possible associated myrmecophytes and previously described ecological ranges of devil's gardens cannot explain their ecological restriction to cloud forests in Eastern Amazonia, but our discovery is consistent with the biogeographic refuge hypothesis (i.e. highlands along the Amazon Basin constitute refugia for humid forests that spread during the Cenozoic). Our finding opens exciting perspectives for comparative studies of the origin, ecology and evolutionary history of this ant-plant mutualism. Copyright © Cambridge University Press 2016.  
  Address INRA, UMR, EcoFoG, Campus Agronomique, BP 316, Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 691  
Permanent link to this record
 

 
Author Amusant, N.; Beauchene, J.; Fournier, M.; Janin, G.; Thevenon, M.F. openurl 
  Title Decay resistance in Dicorynia guianensis Amsh.: analysis of inter-tree and intra-tree variability and relations with wood colour Type Journal Article
  Year 2004 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 61 Issue 4 Pages 373-380  
  Keywords Dicorynia guianensis; Amazonian wood; wood colour/decay resistance; heartwood; variability  
  Abstract (up) Dicorynia guianensis Amsh. is very widespread in the forests of French Guiana and moreover is the leading species harvested in this area, but its main defect remains the great variability of wood durability, especially with respect to fungal decay. The aim of this work was to study this inter- and intra-tree variability in order to identify the parameters responsible for this variation (growth area, height and radial position) within the tree. The resistance decrease from the outer heartwood to the pith. Measurement of colour variation using the CIELAB (L*, a*, b*, C*, h*) system was performed at the intra-tree level to highlight the longitudinal and radial gradients of variation. Dicorynia guianensis becomes less red and dark from the outer to the inner heartwood and from the base to the top. Lastly, variations of colour and durability were correlated: the wood is less resistant the redder and darker it is.  
  Address CIRAD Foret, Forest Prod Programme, F-34398 Montpellier 5, France, Email: nadine.amusant@cirad.fr  
  Corporate Author Thesis  
  Publisher E D P SCIENCES Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000223955500009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 262  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: