|   | 
Details
   web
Records
Author Gargallo-Garriga, Albert ; Sardans, Jordi ; Alrefaei, Abdulwahed Fahad ; Klem, Karel ; Fuchslueger, Lucia ; Ramirez-Rojas, Irène ; Donald, Julian ; Leroy, Celine ; Van Langenhove, Leandro ; Verbruggen, Erik ; Janssens, Ivan A. ; Urban, Otmar ; Penuelas, Josep
Title Tree Species and Epiphyte Taxa Determine the “Metabolomic niche” of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest Type Journal Article
Year 2021 Publication Metabolites Abbreviated Journal
Volume 11 Issue 11 Pages
Keywords Bacteria, Canopy soils, Epiphyte, French Guiana, Metabolomics
Abstract (down) Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes
Address
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1041
Permanent link to this record
 

 
Author Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J.
Title Traits controlling shade tolerance in tropical montane trees Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume 40 Issue 2 Pages 183-197
Keywords biomass allocation; leaf temperature; plant traits; Rwanda; shade intolerance; shade tolerance; tropical montane forest; article; biomass allocation; breathing; canopy; carbon balance; compensation; photosynthesis; plant leaf; plant stem; rain forest; Rwanda; shade tolerance; species difference; sweating
Abstract (down) Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation. © The Author(s) 2019. Published by Oxford University Press.
Address Rwanda Agriculture and Animal Resources Development, PO Box 5016Kigali, Rwanda
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 922
Permanent link to this record
 

 
Author Alméras, T.; Clair, B.
Title Critical review on the mechanisms of maturation stress generation in trees Type Journal Article
Year 2016 Publication Journal of the Royal Society Interface Abbreviated Journal J R Soc Interface
Volume 13 Issue 122 Pages
Keywords
Abstract (down) Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 719
Permanent link to this record
 

 
Author Gonzalès-Melo, Andrès ; Posada, Juan Manuel ; Beauchêne, Jacques ; Lehnebach, Romain ; Leviennois, Sébastien ; Rivera, Katherine ; Clair, Bruno
Title Radial variations in wood functional traits in a rain forest from eastern Amazonia Type Journal Article
Year 2021 Publication Trees Abbreviated Journal
Volume 36 Issue Pages 569–581
Keywords
Abstract (down) Trees can modify their wood structure in response to changes in mechanical, hydraulic and storage demands during their life-cycles. Thus, examining radial variations in wood traits is important to expand our knowledge of tree functioning and species ecological strategies. Yet, several aspects of radial changes in wood functional traits are still poorly understood, especially in angiosperm trees from tropical humid forests. Here, we examined radial shifts in wood traits in trunks of tropical forest species and explored their potential ecological implications. We first examined radial variations in wood specific gravity (WSG). Then, we asked what anatomical traits drove radial variations in WSG, and whether WSG, vessel fraction and specific hydraulic conductivity vary independently from each other along the radius gradients. We measured WSG and eight wood anatomical traits, at different radial positions along the trunks, in 19 tree species with contrasting shade-tolerance from a lowland tropical forest in eastern Amazonia. Most species had significant radials shifts in WSG. Positive radial gradients in WSG (i.e., increments from pith to bark) were common among shade-intolerant species and were explained by different combinations of fiber and parenchyma traits, while negative radial shifts in WSG (e.g., decreases towards the bark) were present in shade-tolerants, but were generally weakly related to anatomical traits. We also found that, in general, WSG was unrelated to vessel fraction and specific hydraulic conductivity in any radial position. This study illustrates the contrasting radial variations in wood functional traits that occur in tree species from a humid lowland tropical forest. In particular, our results provide valuable insights into the anatomical traits driving WSG variations during tree development. These insights are important to expand our knowledge on tree ecological strategies by providing evidence on how wood allocation varies as trees grow, which in turn can be useful in studying trait-demography associations, and in estimating tree above-ground biomass.
Address
Corporate Author Thesis
Publisher Springer Link Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1037
Permanent link to this record
 

 
Author Abedini, R.; Clair, B.; Pourtahmasi, K.; Laurans, F.; Arnould, O.
Title Cell wall thickening in developing tension wood of artificially bent poplar trees Type Journal Article
Year 2015 Publication IAWA Journal Abbreviated Journal IAWA Journal
Volume 36 Issue 1 Pages 44-57
Keywords developing xylem; Gelatinous layer; maturation stress; secondary wall layer; tree biomechanics
Abstract (down) Trees can control their shape and resist gravity thanks to their ability to produce wood under tensile stress. This stress is known to be produced during the maturation of wood fibres but the mechanism of its generation remains unclear. This study focuses on the formation of the secondary wall in tension wood produced in artificially tilted poplar saplings. Thickness of secondary wall layer (SL) and gelatinous layer (GL) were measured from cambium to mature wood in several trees sampled at different times after tilting. Measurements on wood fibres produced before tilting show the progressive increase of secondary wall thickness during the growing season. After the tilting date, SL thickness decreased markedly from normal wood to tension wood while the total thickness increased compared to normal wood, with the development of a thick GL. However, even after GL formation, SL thickness continues to increase during the growing season. GL thickening was observed to be faster than SL thickening. The development of the unlignified GL is proposed to be a low cost, efficient strategy for a fast generation of tensile stress in broadleaved trees. © 2015 International Association of Wood Anatomists.
Address INRA, UR588 Amélioration, Génétique et Physiologie ForestièresOrléans, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 17 April 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 596
Permanent link to this record
 

 
Author Tysklind, N.; Etienne, M.-P.; Scotti-Saintagne, C.; Tinaut, A.; Casalis, M.; Troispoux, V.; Cazal, S.-O.; Brousseau, L.; Ferry, B.; Scotti, I.
Title Microgeographic local adaptation and ecotype distributions: The role of selective processes on early life-history traits in sympatric, ecologically divergent Symphonia populations Type Journal Article
Year 2020 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution
Volume 10 Issue 19 Pages 10735-10753
Keywords determinants of plant community diversity and structure; evolutionary ecology; landscape ecology; local adaptation; Neotropical forest; plant development and life-history traits; reciprocal transplantation experiments; Symphonia
Abstract (down) Trees are characterized by the large number of seeds they produce. Although most of those seeds will never germinate, plenty will. Of those which germinate, many die young, and eventually, only a minute fraction will grow to adult stage and reproduce. Is this just a random process? Do variations in germination and survival at very young stages rely on variations in adaptations to microgeographic heterogeneity? and do these processes matter at all in determining tree species distribution and abundance?. We have studied these questions with the Neotropical Symphonia tree species. In the Guiana shield, Symphonia are represented by at least two sympatric taxa or ecotypes, Symphonia globulifera found almost exclusively in bottomlands, and a yet undescribed more generalist taxon/ecotype, Symphonia sp1. A reciprocal transplantation experiment (510 seeds, 16 conditions) was set up and followed over the course of 6 years to evaluate the survival and performance of individuals from different ecotypes and provenances. Germination, survival, growth, and herbivory showed signs of local adaptation, with some combinations of ecotypes and provenances growing faster and surviving better in their own habitat or provenance region. S. globulifera was strongly penalized when planted outside its home habitat but showed the fastest growth rates when planted in its home habitat, suggesting it is a specialist of a high-risk high-gain strategy. Conversely, S. sp1 behaved as a generalist, performing well in a variety of environments. The differential performance of seeds and seedlings in the different habitats matches the known distribution of both ecotypes, indicating that environmental filtering at the very early stages can be a key determinant of tree species distributions, even at the microgeographic level and among very closely related taxa. Furthermore, such differential performance also contributes to explain, in part, the maintenance of the different Symphonia ecotypes living in intimate sympatry despite occasional gene flow. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd
Address UMR AMAP, IRD, Cirad, CNRS, INRAE, Université Montpellier, Montpellier, France
Corporate Author Thesis
Publisher John Wiley and Sons Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20457758 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 951
Permanent link to this record
 

 
Author Aubry-Kientz, M.; Rossi, V.; Boreux, J.-J.; Herault, B.
Title A joint individual-based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics Type Journal Article
Year 2015 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution
Volume 5 Issue 12 Pages 2457-2465
Keywords Bayesian framework; Estimation method; Individual-based model; Linked models; Mcmc; Paracou; Tropical forest dynamic
Abstract (down) Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20-year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait-based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests. © 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Address Département des Sciences et Gestion de l'environnement, Université de Liège, Arlon, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 3 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 608
Permanent link to this record
 

 
Author Bréchet, Laëtitia M.; Daniel Warren; Stahl, Clément; Burban, Benoït; Goret, Jean-Yves; Salomon, Roberto L.; Janssens, Ivan A.o
Title Simultaéneous tree stem and soil greenhouse gas (CO2, CH4, N2O) flux measurements: a novel design for continuous monitoring towards improving flux estimates and temporal resolution Type Journal Article
Year 2021 Publication New Phytologist Abbreviated Journal
Volume 230 Issue 6 Pages 2487-2500
Keywords système de chambre automatisé ; efflux de dioxyde de carbone ; flux de méthane ; flux d'oxyde nitreux ; tige d'arbre ; forêt tropicale
Abstract (down) Tree stems and soils can act as sources and sinks for the greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Since both uptake and emission capacities can be large, especially in tropical rainforests, accurate assessments of the magnitudes and temporal variations of stem and soil GHG fluxes are required. We designed a new flexible stem chamber system for continuously measuring GHG fluxes in a French Guianese rainforest. Here, we describe this new system, which is connected to an automated soil GHG flux system, and discuss measurement uncertainty and potential error sources. In line with findings for soil GHG flux estimates, we demonstrated that lengthening the stem chamber closure time was required for accurate estimates of tree stem CH4 and N2O flux but not tree stem CO2 flux. The instrumented stem was a net source of CO2 and CH4 and a weak sink of N2O. Our experimental setup operated successfully in situ and provided continuous tree and soil GHG measurements at a high temporal resolution over an 11-month period. This automated system is a major step forward in the measurement of GHG fluxes in stems and the atmosphere concurrently with soil GHG fluxes in tropical forest ecosystems.
Address
Corporate Author Thesis
Publisher New Phytologist Foundation Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1004
Permanent link to this record
 

 
Author Almeras, T.
Title Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance Type Journal Article
Year 2008 Publication Tree Physiology Abbreviated Journal Tree Physiol.
Volume 28 Issue 10 Pages 1513-1523
Keywords biomechanics; calibration; diurnal strains; mechanical model; multilayer cylinder; water potential
Abstract (down) Tree steins shrink in diameter during the day and swell during the night in response to changes in water tension in the xylem. Stein shrinkage can easily be measured in a nondestructive way, to derive continuous information about tree water status. The relationship between the strain and the change in water tension can be evaluated by empirical calibrations, or can be related to the structure of the plant. A mechanical analysis was performed to make this relationship explicit. The stem is modeled as a cylinder made of multiple layers of tissues, including heartwood, sapwood, and inner and outer bark. The effect of changes in water tension on the apparent strain at the surface of a tissue is quantified as a function of parameters defining stem anatomy and the mechanical properties of the tissues. Various possible applications in the context of tree physiology are suggested.
Address INRA UMR Ecofog, Kourou 97379, French Guiana, Email: t_almeras@hotmail.com
Corporate Author Thesis
Publisher HERON PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0829-318X ISBN Medium
Area Expedition Conference
Notes ISI:000260027200009 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 129
Permanent link to this record
 

 
Author Fanin, N.; Hattenschwiler, S.; Barantal, S.; Schimann, H.; Fromin, N.
Title Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Type Journal Article
Year 2011 Publication Soil Biology & Biochemistry Abbreviated Journal Soil Biol. Biochem.
Volume 43 Issue 5 Pages 1014-1022
Keywords Carbon forms; French Guiana; Litter quality; Microbial respiration process; Nitrogen; Phosphorus; Stoichiometry
Abstract (down) Tree species-rich tropical rainforests are characterized by a highly variable quality of leaf litter input to the soil at small spatial scales. This diverse plant litter is a major source of energy and nutrients for soil microorganisms, particularly in rainforests developed on old and nutrient-impoverished soils. Here we tested the hypothesis that the variability in leaf litter quality produced by a highly diverse tree community determines the spatial variability of the microbial respiration process in the underlying soil. We analyzed a total of 225 litter-soil pairs from an undisturbed Amazonian rainforest in French Guiana using a hierarchical sampling design. The microbial respiration process was assessed using substrate-induced respiration (SIR) and compared to a wide range of quality parameters of the associated litter layer (litter nutrients, carbon forms, stoichiometry, litter mass and pH). The results show that the variability of both litter quality and SIR rates was more important at large than at small scales. SIR rates varied between 1.1 and 4.0 μg h(-1) and were significantly correlated with litter layer quality (up to 50% of the variability explained by the best mixed linear model). Total litter P content was the individual most important factor explaining the observed spatial variation in soil SIR, with higher rates associated to high litter P. SIR rates also correlated positively with total litter N content and with increasing proportions of labile C compounds. However, contrary to our expectation, SIR rates were not related to litter stoichiometry. These data suggest that in the studied Amazonian rainforest, tree canopy composition is an important driver of the microbial respiration process via leaf litter fall, resulting in potentially strong plant-soil feedbacks. (C) 2011 Elsevier Ltd. All rights reserved.
Address [Fanin, Nicolas; Haettenschwiler, Stephan; Barantal, Sandra; Fromin, Nathalie] CNRS, CEFE, UMR 5175, F-34293 Montpellier 5, France, Email: nicolas.fanin@cefe.cnrs.fr
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0717 ISBN Medium
Area Expedition Conference
Notes ISI:000289219500019 Approved no
Call Number EcoFoG @ webmaster @ Serial 304
Permanent link to this record