|   | 
Details
   web
Records
Author Malé, P.-J.G.; Bardon, L.; Besnard, G.; Coissac, E.; Delsuc, F.; Engel, J.; Lhuillier, E.; Scotti-Saintagne, C.; Tinaut, A.; Chave, J.
Title Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family Type Journal Article
Year 2014 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.
Volume 14 Issue 5 Pages 966-975
Keywords Next-generation sequencing; Organellar genome; Phylogenomics; Tropical trees
Abstract (down) Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups. © 2014 John Wiley & Sons Ltd.
Address GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, F-31326, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17550998 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2014; Correspondence Address: Malé, P.-J.G.; UMR 5174 Laboratoire Évolution and Diversité Biologique, CNRS, Université Paul Sabatier, ENFA, 118 route de Narbonne, Toulouse, F-31062, France; email: pjg.male@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 559
Permanent link to this record
 

 
Author Fine, P.V.A.; Baraloto, C.
Title Habitat Endemism in White-sand Forests: Insights into the Mechanisms of Lineage Diversification and Community Assembly of the Neotropical Flora Type Journal Article
Year 2016 Publication Biotropica Abbreviated Journal Biotropica
Volume 48 Issue 1 Pages 24-33
Keywords Amazon; Endemic; Functional traits; Habitat specialization; Niche conservatism; Speciation
Abstract (down) White-sand forests represent natural laboratories of evolution over their long history throughout Amazonia and the Guiana Shield and pose significant physiological challenges to the plants and animals they host. The study of diversification in plant lineages comprising species endemic to white-sand forest can therefore give insights into processes of evolution and community assembly in tropical forests. In this article, we synthesize recent studies of white-sand forests to integrate patterns of plant species distribution with processes of lineage diversification and community assembly in the white-sand flora. We contrast lineages that have radiated uniquely in these habitats (e.g., Pagamea, Rubiaceae), with cosmopolitan lineages comprising specialists to white-sand forests and other habitats that may have arisen via ecological speciation across habitat gradients (e.g., Protium, Burseraceae). In both cases, similar suites of functional traits have evolved, including investment in dense, long-lived tissues that are well-defended structurally and chemically. White-sand endemics, therefore, play an important role in biodiversity conservation because they represent unique combinations of functional and phylogenetic diversity. Furthermore, white-sand endemics may respond differently than other tropical forest plant species to contemporary global changes because they comprise resilient functional types that may better withstand increased drought, temperature, and invasions of exotic pests in these regions. © 2016 The Association for Tropical Biology and Conservation.
Address Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :3; Export Date: 12 February 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 659
Permanent link to this record
 

 
Author Roy, M.; Schimann, H.; Braga-Neto, R.; Da Silva, R.A.E.; Duque, J.; Frame, D.; Wartchow, F.; Neves, M.A.
Title Diversity and Distribution of Ectomycorrhizal Fungi from Amazonian Lowland White-sand Forests in Brazil and French Guiana Type Journal Article
Year 2016 Publication Biotropica Abbreviated Journal Biotropica
Volume 48 Issue 1 Pages 90-100
Keywords campina; campinarana; Amanitaceae; Amanitaceae; Boletaceae; Boletaceae; Campina; Campinarana; Herbarium; Herbário; Russulaceae; Russulaceae
Abstract (down) White-sand forests are thought to host many ectomycorrhizal fungi, as demonstrated by the numerous fruiting body collections made by Rolf Singer in the lower Rio Negro in the late 1970s. Despite recognition of the importance of ectomycorrhizal fungi in white-sand forests, there has not yet been a systematic examination of diversity and taxonomic composition across white-sand forests, or more widely across lowland Amazonian forests. In an effort to broaden our view of ectomycorrhizal fungal diversity and distribution on white-sand forests, we collected ectomycorrhizal fruiting bodies in 10 plots of white-sand forests in Brazil and French Guiana between 2012 and 2014. We collected 221 specimens and 62 morphospecies, from the 10 plots, confirming that all studied white-sand forests host ectomycorrhizal fungi. Additionally, we searched for taxa associated with white sands among specimens deposited in Brazilian herbaria. We report 1006 unique ectomycorrhizal specimen records in 18 Brazilian herbaria, of which 137 specimens and 64 species are reported from white-sand forests, mainly in the state of Amazonas, Brazil. Russulaceae and Amanitaceae were frequent in all habitats, and Cortinarius were more frequent on white sands. Our results highlight the high diversity and heterogeneity of ectomycorrhizal communities on white-sand forests, and the wide distribution of ectomycorrhizal fungi throughout Brazil, irrespective of soil type. © 2016 The Association for Tropical Biology and Conservation.
Address Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :2; Export Date: 12 February 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 658
Permanent link to this record
 

 
Author Hibert, F.; Sabatier, D.; Andrivot, J.; Scotti-Saintagne, C.; Gonzalez, S.; Prévost, M.-F.; Grenand, P.; Chave, J.; Caron, H.; Richard-Hansen, C.
Title Botany, genetics and ethnobotany: A crossed investigation on the elusive tapir's diet in French guiana Type Journal Article
Year 2011 Publication PLoS One Abbreviated Journal PLoS ONE
Volume 6 Issue 10 Pages e25850
Keywords
Abstract (down) While the populations of large herbivores are being depleted in many tropical rainforests, the importance of their trophic role in the ecological functioning and biodiversity of these ecosystems is still not well evaluated. This is due to the outstanding plant diversity that they feed upon and the inherent difficulties involved in observing their elusive behaviour. Classically, the diet of elusive tropical herbivores is studied through the observation of browsing signs and macroscopic analysis of faeces or stomach contents. In this study, we illustrate that the original coupling of classic methods with genetic and ethnobotanical approaches yields information both about the diet diversity, the foraging modalities and the potential impact on vegetation of the largest terrestrial mammal of Amazonia, the lowland tapir. The study was conducted in the Guianan shield, where the ecology of tapirs has been less investigated. We identified 92 new species, 51 new genera and 13 new families of plants eaten by tapirs. We discuss the relative contribution of our different approaches, notably the contribution of genetic barcoding, used for the first time to investigate the diet of a large tropical mammal, and how local traditional ecological knowledge is accredited and valuable for research on the ecology of elusive animals. © 2011 Hibert et al.
Address INRA, Université de Bordeaux, UMR1202 BIOGECO, Cestas, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 19326203 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 21 October 2011; Source: Scopus; Art. No.: e25850; doi: 10.1371/journal.pone.0025850; Language of Original Document: English; Correspondence Address: Hibert, F.; Direction Etudes et Recherches Guyane, Office National de la Chasse et de la Faune Sauvage, Kourou, French Guiana, France; email: fabricenz@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 343
Permanent link to this record
 

 
Author Pétillon, J.; Leroy, B.; Djoudi, E.A.; Vedel, V.
Title Small and large spatial scale coexistence of ctenid spiders in a neotropical forest (French Guiana) Type Journal Article
Year 2018 Publication Tropical Zoology Abbreviated Journal
Volume 31 Issue 2 Pages 85-98
Keywords Araneae; flooding; Guianese shield; inselberg; juveniles
Abstract (down) While spiders constitute the most abundant and diverse arthropods in many habitats, they remained under-studied, especially in tropical rainforests. The goal of this study is to assess the spatial distribution of the spider family Ctenidae by assessing associations of species diversity and population traits among different habitat conditions. Fieldwork was carried out during 2013 in habitats varying in flooding frequency (plateau vs. flooded forest) and elevation (inselberg vs. lowland) in the Nouragues National Natural Reserve, French Guiana. Assemblage composition, population structure, and trait measurements of one dominant species were assessed using hand collection in replicated quadrats. We found strong effects on ctenid assemblages attributable to both elevation and flooding, with changes in relative abundance of species among habitats, but few correlated densities between species. At the population level, main differences in species distribution between and within habitats were detected only when juveniles were taken into account. No effect of elevation was found on the measurements of traits of the dominant species, but legs were proportionally shorter in flooded habitats, suggesting reduced active dispersal in these habitats. Our study highlights the value of complementary of measures of diversity and traits at different biological scales in Ctenidae.
Address UMR CNRS 8175 Ecologie des Forêts de Guyane, Université Antilles-Guyane, Kourou Cedex, Guyane Française, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 23 April 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 800
Permanent link to this record
 

 
Author Bonhomme, Camille ; Céréghino, Régis ; Carrias, Jean-François ; Compin, Arthur ; Corbara, Bruno ; Jassey, Vincent E.J. ; Leflaive, Joséphine ; Farjalla, Vinicius F. ; Marino, Nicholas A.C. ; Rota, Thibault ; Srivastava, Diane S. ; Leroy, Celine
Title In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a neotropical ecosystem Type Journal Article
Year 2021 Publication Journal of Animal Ecology Abbreviated Journal
Volume 90 Issue 9 Pages 2015-2026
Keywords
Abstract (down) While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in ‘naïve’ Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.
Address
Corporate Author Thesis
Publisher British Ecological Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1012
Permanent link to this record
 

 
Author Sist, P.; Rutishauser, E.; Peña-Claros, M.; Shenkin, A.; Herault, B.; Blanc, L.; Baraloto, C.; Baya, F.; Benedet, F.; da Silva, K.E.; Descroix, L.; Ferreira, J.N.; Gourlet-Fleury, S.; Guedes, M.C.; Bin Harun, I.; Jalonen, R.; Kanashiro, M.; Krisnawati, H.; Kshatriya, M.; Lincoln, P.; Mazzei, L.; Medjibé, V.; Nasi, R.; d'Oliveira, M.V.N.; de Oliveira, L.C.; Picard, N.; Pietsch, S.; Pinard, M.; Priyadi, H.; Putz, F.E.; Rodney, K.; Rossi, V.; Roopsind, A.; Ruschel, A.R.; Shari, N.H.Z.; Rodrigues de Souza, C.; Susanty, F.H.; Sotta, E.D.; Toledo, M.; Vidal, E.; West, T.A.P.; Wortel, V.; Yamada, T.
Title The Tropical managed forests Observatory: A research network addressing the future of tropical logged forests Type Journal Article
Year 2015 Publication Applied Vegetation Science Abbreviated Journal Appl. Veg. Sci.
Volume 18 Issue 1 Pages 171-174
Keywords Biodiversity; Carbon cycle; Climate change; Ecosystem resilience; Logging; Silviculture; Tropical forests; Tropical managed forests Observatory
Abstract (down) While attention on logging in the tropics has been increasing, studies on the long-term effects of silviculture on forest dynamics and ecology remain scare and spatially limited. Indeed, most of our knowledge on tropical forests arises from studies carried out in undisturbed tropical forests. This bias is problematic given that logged and disturbed tropical forests are now covering a larger area than the so-called primary forests. A new network of permanent sample plots in logged forests, the Tropical managed Forests Observatory (TmFO), aims to fill this gap by providing unprecedented opportunities to examine long-term data on the resilience of logged tropical forests at regional and global scales. TmFO currently includes 24 experimental sites distributed across three tropical regions, with a total of 490 permanent plots and 921 ha of forest inventories. To improve our knowledge of the resilience of tropical logged forests, 20 research institutes are now collaborating on studies on the effects of logging on forest structure, productivity, biodiversity and carbon fluxes at large spatial and temporal scales. These studies are carried out in the Tropical managed Forests Observatory (TmFO), an international network including 24 sites and 490 permanent sample plots across South America, Africa and South East Asia.
Address Duke University's Nicholas School of the EnvironmentNorth Carolina, United States
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14022001 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 12 December 2014; Coden: Avscf; Correspondence Address: Sist, P.; Cirad, UR 105 TA/10CFrance Approved no
Call Number EcoFoG @ webmaster @ Serial 571
Permanent link to this record
 

 
Author Fauset, S.; Johnson, M.O.; Gloor, M.; Baker, T.R.; Monteagudo M., A.; Brienen, R.J.W.; Feldpausch, T.R.; Lopez-Gonzalez, G.; Malhi, Y.; Ter Steege, H.; Pitman, N.C.A.; Baraloto, C.; Engel, J.; Petronelli, P.; Andrade, A.; Camargo, J.L.C.; Laurance, S.G.W.; Laurance, W.F.; Chave, J.; Allie, E.; Vargas, P.N.; Terborgh, J.W.; Ruokolainen, K.; Silveira, M.; Aymard C., G.A.; Arroyo, L.; Bonal, D.; Ramirez-Angulo, H.; Araujo-Murakami, A.; Neill, D.; Herault, B.; Dourdain, A.; Torres-Lezama, A.; Marimon, B.S.; Salomão, R.P.; Comiskey, J.A.; Réjou-Méchain, M.; Toledo, M.; Licona, J.C.; Alarcón, A.; Prieto, A.; Rudas, A.; Van Der Meer, P.J.; Killeen, T.J.; Marimon Junior, B.-H.; Poorter, L.; Boot, R.G.A.; Stergios, B.; Torre, E.V.; Costa, F.R.C.; Levis, C.; Schietti, J.; Souza, P.; Groot, N.; Arets, E.; Moscoso, V.C.; Castro, W.; Coronado, E.N.H.; Peña-Claros, M.; Stahl, C.; Barroso, J.; Talbot, J.; Vieira, I.C.G.; Van Der Heijden, G.; Thomas, R.; Vos, V.A.; Almeida, E.C.; Davila, E.Á.; Aragão, L.E.O.C.; Erwin, T.L.; Morandi, P.S.; De Oliveira, E.A.; Valadão, M.B.X.; Zagt, R.J.; Van Der Hout, P.; Loayza, P.A.; Pipoly, J.J.; Wang, O.; Alexiades, M.; Cerón, C.E.; Huamantupa-Chuquimaco, I.; Di Fiore, A.; Peacock, J.; Camacho, N.C.P.; Umetsu, R.K.; De Camargo, P.B.; Burnham, R.J.; Herrera, R.; Quesada, C.A.; Stropp, J.; Vieira, S.A.; Steininger, M.; Rodríguez, C.R.; Restrepo, Z.; Muelbert, A.E.; Lewis, S.L.; Pickavance, G.C.; Phillips, O.L.
Title Hyperdominance in Amazonian forest carbon cycling Type Journal Article
Year 2015 Publication Nature Communications Abbreviated Journal Nature Communications
Volume 6 Issue 6857 Pages
Keywords
Abstract (down) While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few â € hyperdominantâ €™ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only â ‰1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. © 2015 Macmillan Publishers Limited. All rights reserved.
Address Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 18 May 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 602
Permanent link to this record
 

 
Author Richard-Hansen, C.; Jaouen, G.; Denis, T.; Brunaux, O.; Marcon, E.; Guitet, S.
Title Landscape patterns influence communities of medium-to large-bodied vertebrates in undisturbed terra firme forests of French Guiana Type Journal Article
Year 2015 Publication Journal of Tropical Ecology Abbreviated Journal Journal of Tropical Ecology
Volume 31 Issue 5 Pages 423-436
Keywords Animal communities; diversity; environmental heterogeneity; French Guiana; landscape ecology; species-habitat association
Abstract (down) Whereas broad-scale Amazonian forest types have been shown to influence the structure of the communities of medium-to large-bodied vertebrates, their natural heterogeneity at smaller scale or within the terra firme forests remains poorly described and understood. Diversity indices of such communities and the relative abundance of the 21 most commonly observed species were compared from standardized line-transect data across 25 study sites distributed in undisturbed forests in French Guiana. We first assessed the relevance of a forest typology based on geomorphological landscapes to explain the observed heterogeneity. As previously found for tree beta-diversity patterns, this new typology proved to be a non-negligible factor underlying the beta diversity of the communities of medium-to large bodied vertebrates in French Guianan terra firme forests. Although the species studied are almost ubiquitous across the region, they exhibited habitat preferences through significant variation in abundance and in their association index with the different landscape types. As terra firme forests represent more than 90% of the Amazon basin, characterizing their heterogeneity-including faunal communities-is a major challenge in neotropical forest ecology. © 2015 Cambridge University Press.
Address ONCFS, EcoFoG, Kourou Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 16 November 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 638
Permanent link to this record
 

 
Author Picard, Nicolas ; Mortier, Frédéric ; Ploton, Pierre ; Liang, Jingjing ; Derroire, Géraldine ; Bastin, Jean-François ; Ayyappan, Narayanan ; Bénédet, Fabrice ; Bosela, Faustin Boyemba ; Clark, Connie J. ; Crowther, Thomas W. ; Obiang, Nestor Laurier Engone ; Forni, Eric ; Harris, David ; Ngomanda, Alfred ; Poulsen, John R. ; Sonké, Bonaventure ; Couteron, Pierre ; Gourley-Fleury, Sylvie
Title Using Model Analysis to Unveil Hidden Patterns in Tropical Forest structures Type Journal Article
Year 2021 Publication Frontiers in Ecology and Evolution Abbreviated Journal
Volume 9 Issue Pages 599200
Keywords
Abstract (down) When ordinating plots of tropical rain forests using stand-level structural attributes such as biomass, basal area and the number of trees in different size classes, two patterns often emerge: a gradient from poorly to highly stocked plots and high positive correlations between biomass, basal area and the number of large trees. These patterns are inherited from the demographics (growth, mortality and recruitment) and size allometry of trees and tend to obscure other patterns, such as site differences among plots, that would be more informative for inferring ecological processes. Using data from 133 rain forest plots at nine sites for which site differences are known, we aimed to filter out these patterns in forest structural attributes to unveil a hidden pattern. Using a null model framework, we generated the anticipated pattern inherited from individual allometric patterns. We then evaluated deviations between the data (observations) and predictions of the null model. Ordination of the deviations revealed site differences that were not evident in the ordination of observations. These sites differences could be related to different histories of large-scale forest disturbance. By filtering out patterns inherited from individuals, our model analysis provides more information on ecological processes
Address
Corporate Author Thesis
Publisher Frontiers Media Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1029
Permanent link to this record