toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina doi  openurl
  Title Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species Type Journal Article
  Year 2021 Publication Annals of Forest Science Abbreviated Journal (up)  
  Volume 78 Issue 4 Pages 78-87  
  Keywords Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem  
  Abstract Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1034  
Permanent link to this record
 

 
Author Barr, Cheryl B. ; Cerdan, Axel ; Clavier, Simon ; Murienne, Jérôme doi  openurl
  Title Amazonopsis cerdani (Coleoptera: Elmidae: Elminae), a New Species of RiffleBeetle from French Guiana with Habitat Observations Type Journal Article
  Year 2021 Publication The Coleopterists Bulletin Abbreviated Journal (up)  
  Volume 75 Issue 2 Pages 427-439  
  Keywords  
  Abstract A third species of Amazonopsis , Amazonopsis cerdani Barr and Cerdan, new species (Coleoptera: Elmidae), is herein described from French Guiana. One female paratype of Amazonopsis theranyi Barr from Peru is tentatively reassigned to A. cerdani as a non-paratype. Photographic images of the male and female habitus, and the male genitalia, are provided, as is a distribution map and a key to the species. Amazonopsis cerdani differs from A. theranyi from Peru and Amazonopsis camachoi Barr from Venezuela by the presence of prominent spines on protarsomeres 1–4 of males, among other characters. The habitat of this species is small, shallow, lowland streams with sandy-silty substrates and low flow. Specimens were collected from unconsolidated leaf litter in depositional areas, and from stick and leaf packs lodged in the current. Genetic analysis conducted on three specimens from two localities, a male and two females, showed that they are conspecific.  
  Address  
  Corporate Author Thesis  
  Publisher BioOne Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1035  
Permanent link to this record
 

 
Author Lormée, Hervé ; Berzins, Rachel ; Rocheteau, Vincent ; De Coster, Fran ; Denis, Thomas ; Richard-Hanssen, Cécile doi  openurl
  Title Seasonal Variation in the Home Ranges of Black Curassow, Crax alector, in French Guiana Type Journal Article
  Year 2021 Publication Tropical Conservation Science Abbreviated Journal (up)  
  Volume 14 Issue 1 Pages 1-10  
  Keywords spatial ecology, Cracids, tracking, Kernel method, Home range, movement pattern  
  Abstract Cracidae is the most threatened avian family in the Neotropics, mainly because of habitat destruction, heavy hunting pressure and poaching. In French Guiana, Black Curassows are heavily hunted, although basic knowledge of the ecological and demographical traits of the species remains limited. Such a gap prevents any attempt to assess the impact of hunting and to help stakeholders to develop proposals ensuring hunting sustainability. The spatial relationship between animals and their habitat is important for conservation management, being related to population densities through complex patterns. Here, we report on a radio-tracking study of Black Curassows in tropical primary rainforest, in Nouragues National Reserve, French Guiana. The aims of the study were to estimate home range size and its variation across seasons, and to quantify movement patterns of the birds. We captured and fitted VHF tags to four adults, and tracked them for 10 to 21.5 months. Daily movements were recorded, and home ranges estimated using the Kernel Density method, for two consecutive wet seasons and one dry season. Using 95% and 50% Kernel densities, the average annual home range and core area were 96.3± 32.6 ha (SE) and 22.8 ± 2.8 ha respectively. Home ranges appeared spatially stable over the two years, and overlapped between neighbouring groups. During the dry season, Black Curassows did not migrate but tended to enlarge their home range, with greater daily movements and higher home range overlap. Although additional data are still needed, our results can help to improve the knowledge and management of this poorly studied species  
  Address  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1036  
Permanent link to this record
 

 
Author Gonzalès-Melo, Andrès ; Posada, Juan Manuel ; Beauchêne, Jacques ; Lehnebach, Romain ; Leviennois, Sébastien ; Rivera, Katherine ; Clair, Bruno doi  openurl
  Title Radial variations in wood functional traits in a rain forest from eastern Amazonia Type Journal Article
  Year 2021 Publication Trees Abbreviated Journal (up)  
  Volume 36 Issue Pages 569–581  
  Keywords  
  Abstract Trees can modify their wood structure in response to changes in mechanical, hydraulic and storage demands during their life-cycles. Thus, examining radial variations in wood traits is important to expand our knowledge of tree functioning and species ecological strategies. Yet, several aspects of radial changes in wood functional traits are still poorly understood, especially in angiosperm trees from tropical humid forests. Here, we examined radial shifts in wood traits in trunks of tropical forest species and explored their potential ecological implications. We first examined radial variations in wood specific gravity (WSG). Then, we asked what anatomical traits drove radial variations in WSG, and whether WSG, vessel fraction and specific hydraulic conductivity vary independently from each other along the radius gradients. We measured WSG and eight wood anatomical traits, at different radial positions along the trunks, in 19 tree species with contrasting shade-tolerance from a lowland tropical forest in eastern Amazonia. Most species had significant radials shifts in WSG. Positive radial gradients in WSG (i.e., increments from pith to bark) were common among shade-intolerant species and were explained by different combinations of fiber and parenchyma traits, while negative radial shifts in WSG (e.g., decreases towards the bark) were present in shade-tolerants, but were generally weakly related to anatomical traits. We also found that, in general, WSG was unrelated to vessel fraction and specific hydraulic conductivity in any radial position. This study illustrates the contrasting radial variations in wood functional traits that occur in tree species from a humid lowland tropical forest. In particular, our results provide valuable insights into the anatomical traits driving WSG variations during tree development. These insights are important to expand our knowledge on tree ecological strategies by providing evidence on how wood allocation varies as trees grow, which in turn can be useful in studying trait-demography associations, and in estimating tree above-ground biomass.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1037  
Permanent link to this record
 

 
Author Gargallo-Garriga, Albert ; Sardans, Jordi ; Alrefaei, Abdulwahed Fahad ; Klem, Karel ; Fuchslueger, Lucia ; Ramirez-Rojas, Irène ; Donald, Julian ; Leroy, Celine ; Van Langenhove, Leandro ; Verbruggen, Erik ; Janssens, Ivan A. ; Urban, Otmar ; Penuelas, Josep doi  openurl
  Title Tree Species and Epiphyte Taxa Determine the “Metabolomic niche” of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest Type Journal Article
  Year 2021 Publication Metabolites Abbreviated Journal (up)  
  Volume 11 Issue 11 Pages  
  Keywords Bacteria, Canopy soils, Epiphyte, French Guiana, Metabolomics  
  Abstract Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes  
  Address  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1041  
Permanent link to this record
 

 
Author Schmitt, Sylvain ; Raevel, Valérie ; Réjou-Méchain, Maxime ; Ayyappan, Narayanan ; Balachandran, Natesan ; Barathan, Narayanan ; Rajashekar, Gopalakrishnan ; Munoz, François doi  openurl
  Title Canopy and understorey tree guilds respond differently to the environment in an Indian rain forest Type Journal Article
  Year 2021 Publication Journal of Végétation Science Abbreviated Journal (up)  
  Volume 32 Issue 5 Pages e13075  
  Keywords  
  Abstract Questions Changes in the functional composition of tree communities along resource availability gradients have received attention, but it is unclear whether understorey and canopy guilds respond similarly to different light, biomechanical, and hydraulic constraints. Location An anthropically undisturbed, old-growth wet evergreen dipterocarp forest plot located in Karnataka State, India. Methods We measured leaf and wood traits of 89 tree species representing 99% of all individuals in a 10-ha permanent plot with varying topographic and canopy conditions inferred from Light Detection And Ranging (LiDAR) data. We assigned tree species to guilds of canopy and understorey species and assessed the variation of the guild-weighted means of functional-trait values with canopy height and topography. Results The functional-trait space did not differ between canopy and understorey tree species. However, environmental filtering led to significantly different functional composition of canopy and understorey guild assemblages. Furthermore, they responded differently along environmental gradients related to water, nutrients, light, and wind exposure. For example, the canopy guild responded to wind exposure while the understorey guild did not. Conclusions The pools of understorey and canopy species are functionally similar. However, fine-scale environmental heterogeneity impacts differently on these two guilds, generating striking differences in functional composition between understorey and canopy guild assemblages. Accounting for vertical guilds improves our understanding of forest communities' assembly processes.  
  Address  
  Corporate Author Thesis  
  Publisher International Association for Vegetation Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1038  
Permanent link to this record
 

 
Author Guzman, Laura Melissa ; Trzcinski, M. Kurtis ; Barberis, Ignacio M. ; Cereghino, Régis ; Srivastava, Diane S. ; Gilbert Benjamin ; Pillar, Valerio D. ; de Omena, Paula M. ; MacDonald, A. Andrew M. ; Corbara, Bruno ; Leroy, Celine ; Bautista, Fabiola Ospina ; Romero, Gustavo Q. ; Kratina, Pavel ; Debastiani, Vanderlei J. ; Gonialves, Ana Z. ; Marino, Nicholas A.C. ; Farjalla, Vinicius F. ; Richardson, Barbara A. ; Richardson, Michael J. ; Dézerald, Olivier ; Piccoli, Gustavo, C. O. ; Jocqué, Merlijn ; Montero, Guillermo doi  openurl
  Title Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities Type Journal Article
  Year 2021 Publication Ecography Abbreviated Journal (up)  
  Volume 44 Issue 3 Pages 440-452  
  Keywords  
  Abstract Functional traits determine an organism's performance in a given environment and as such determine which organisms will be found where. Species respond to local conditions, but also to larger scale gradients, such as climate. Trait ecology links these responses of species to community composition and species distributions. Yet, we often do not know which environmental gradients are most important in determining community trait composition at either local or biogeographical scales, or their interaction. Here we quantify the relative contribution of local and climatic conditions to the structure and composition of functional traits found within bromeliad invertebrate communities. We conclude that climate explains more variation in invertebrate trait composition within bromeliads than does local conditions. Importantly, climate mediated the response of traits to local conditions; for example, invertebrates with benthic life-history traits increased with bromeliad water volume only under certain precipitation regimes. Our ability to detect this and other patterns hinged on the compilation of multiple fine-grained datasets, allowing us to contrast the effect of climate versus local conditions. We suggest that, in addition to sampling communities at local scales, we need to aggregate studies that span large ranges in climate variation in order to fully understand trait filtering at local, regional and global scales.  
  Address  
  Corporate Author Thesis  
  Publisher Nordic Society OIKOS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1013  
Permanent link to this record
 

 
Author Agrawal, Anurag A. ; Boroczky, Katalin ; Haribal, Meena ; Hastings, Amy P. ; White, Ronald, A. ; Jiang, Ren-Wang ; Duplais, Christophe doi  openurl
  Title Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds Type Journal Article
  Year 2021 Publication PNAS Abbreviated Journal (up)  
  Volume 118 Issue 16 Pages e2024463118  
  Keywords  
  Abstract For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly ( Danaus plexippus ) growth, sequestration, and oviposition when consuming tropical milkweed ( Asclepias curassavica ), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na + /K + -ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.  
  Address  
  Corporate Author Thesis  
  Publisher National Academy of Sciences Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1014  
Permanent link to this record
 

 
Author Coutant, Opale ; Richard-Hansen, Cecile ; de Thoisy, Benoit ; Decotte, Jean-Baptiste ; Valentini, Alice ; Dejean, Tony ; Vigouroux, Régis ; Murienne, Jérôme ; Brosse, Sébastien doi  openurl
  Title Amazonian mammal monitoring using aquatic environmental DNA Type Journal Article
  Year 2021 Publication Molecular Ecology Resources Abbreviated Journal (up)  
  Volume 21 Issue 6 Pages 1875-1888  
  Keywords  
  Abstract Environmental DNA (eDNA) metabarcoding has emerged as one of the most efficient methods to assess aquatic species presence. While the method can in theory be used to investigate nonaquatic fauna, its development for inventorying semi-aquatic and terrestrial fauna is still at an early stage. Here we investigated the potential of aquatic eDNA metabarcoding for inventorying mammals in Neotropical environments, be they aquatic, semi-aquatic or terrestrial. We collected aquatic eDNA in 96 sites distributed along three Guianese watersheds and compared our inventories to expected species distributions and field observations derived from line transects located throughout French Guiana. Species occurrences and emblematic mammalian fauna richness patterns were consistent with the expected distribution of fauna and our results revealed that aquatic eDNA metabarcoding brings additional data to line transect samples for diurnal nonaquatic (terrestrial and arboreal) species. Aquatic eDNA also provided data on species not detectable in line transect surveys such as semi-aquatic, aquatic and nocturnal terrestrial and arboreal species. Although the application of eDNA to inventory mammals still needs some developments to optimize sampling efficiency, it can now be used as a complement to traditional surveys.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1015  
Permanent link to this record
 

 
Author Hiltner, Ulrike ; Huth, Andreas ; Hérault, Bruno ; Holtmann, Anne ; Brauning, Achim ; Fischer, Rico doi  openurl
  Title Climate change alters the ability of neotropical forests to provide timber and sequester carbon Type Journal Article
  Year 2021 Publication Forest Ecology and Management Abbreviated Journal (up)  
  Volume 492 Issue Pages 119166  
  Keywords Exploitation forestière ; Changement climatique ; séquestration du carbone ; Production du bois ; Atténuation des effets du changement climatique ; gestion forestière durable ; forêt tropicale ; Région néotropicale ; Biomasse ; biomasse aérienne des arbres ; gestion de la santé des forêts ; modèle de croissance forestière ; biodiversité forestière  
  Abstract Logging is widespread in tropical regions, with approximately 50% of all humid tropical forests (1.73 × 109 ha) regarded as production forests. To maintain the ecosystem functions of carbon sequestration and timber supply in tropical production forests over a long term, forest management must be sustainable under changing climate conditions. Individual-based forest models are useful tools to enhance our understanding about the long-term effects of harvest and climate change on forest dynamics because they link empirical field data with simulations of ecological processes. The objective of this study is to analyze the combined effects of selective logging and climate change on biomass stocks and timber harvest in a tropical forest in French Guiana. By applying a forest model, we simulated natural forest dynamics under the baseline scenario of current climate conditions and compared the results with scenarios of selective logging under climate change. The analyses revealed how substantially forest dynamics are altered
under different scenarios of climate change. (1) Repeated logging within recovery times decreased biomass and timber harvest, irrespective of the intensity of climate change. (2) With moderate climate change as envisaged by the 5th IPCC Assessment Report (representative concentration pathway 2.6), the average biomass remained the same as in the baseline scenario (−1%), but with intensive climate change (RCP 8.5), the average biomass decreased by 12%. (3) The combination of selective logging and climate change increased the likelihood of changes in forest dynamics, driven mainly by rising temperatures. Under RCP 8.5, the average timber harvest was almost halved, regardless of the logging cycle applied. An application-oriented use of forest models will help to identify opportunities to reduce the effects of unwanted ecosystem changes in a changing environment. To ensure that ecosystem functions in production forests are maintained under climate change conditions, appropriate management strategies will help to maintain biomass and harvest in production forests.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1016  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: