toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marcon, E. url  doi
openurl 
  Title Entropy as a common measure of biodiversity and the spatial structure of economic activity Type Journal Article
  Year 2019 Publication Revue Economique Abbreviated Journal (down) Rev. Econ.  
  Volume 70 Issue 3 Pages 305-326  
  Keywords Diversity; Economic geography; Spatial concentration; Specialization  
  Abstract Measures of spatial concentration and specialization in economics are similar to those of biodiversity and ubiquity of species in ecology. Entropy is the fundamental tool that originated in statistical physics and information theory. The definition of number equivalents or effective numbers, that is the number of types in an ideal, simplified distribution, is introduced along with the partitioning of the joint diversity of a bi-dimensional distribution into absolute and relative concentration or specialization and replication. The whole framework is theoretically robust and allows measuring the spatial structure of a discrete space.  
  Address AgroParisTech, UMR Écologie des forêts de Guyane, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Campus Agronomique, BP 701, Kourou, 97310, French Guiana  
  Corporate Author Thesis  
  Publisher Presses de Sciences Po Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00352764 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 912  
Permanent link to this record
 

 
Author Delaval, M.; Charles-Dominique, P. openurl 
  Title Edge effects on frugivorous and nectarivorous bat communities in a neotropical primary forest in French Guiana Type Journal Article
  Year 2006 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal (down) Rev. Ecol.-Terre Vie  
  Volume 61 Issue 4 Pages 343-352  
  Keywords  
  Abstract The impact of a road crossing a continuous Guyana primary forest was studied through the analysis of qualitative and quantitative changes in a frugivorous and nectarivorous bat community at different distances from forest edge. Bats were captured along three 3-km forest transects perpendicular to the edge, and at the Nouragues Station located 150 km in the interior of the primary forest block, in an uninhabited area. Along the 3-km transects, we caught over seven times more individuals than in primary forest, this value decreasing according to the distance from the edge. Moreover, at the very edge, species richness was higher than along transects, probably due to exchanges between primary forest and the open habitats. On the contrary, diversity values at forest edges were lower than in primary forest, with a demographic explosion of a few opportunistic phyllostomid species such as Carollia perspicillata and Artibeus jamaicensis. Species restricted to degraded habitat like Glossophaga soricina and Artibeus cinereus were still present 3 km away from the edge, where the proportion of C perspicillata was seven times higher than in primary forest at Nouragues. These changes in the community of bats have important consequences on seed and pollen dispersal. So edge effects may significantly affect both faunal and floral assemblage. We conclude that changes in bat community occur up to at least 3 km from forest edge, i. e. at a greater distance than that found for all other vertebrates previously studied. By their implications our results should be considered in habitat and species conservation management plans.  
  Address Dept Ecol & Gest Biodivers, UMR 5176, F-91800 Brunoy, France, Email: marguerite.delaval@wanadoo.fir  
  Corporate Author Thesis  
  Publisher SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0249-7395 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000244361200003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 168  
Permanent link to this record
 

 
Author Delaval, M.; Henry, M.; Charles-Dominique, P. openurl 
  Title Interspecific competition and niche partitioning: Example of a neotropical rainforest bat community Type Journal Article
  Year 2005 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal (down) Rev. Ecol.-Terre Vie  
  Volume 60 Issue 2 Pages 149-165  
  Keywords  
  Abstract To understand the organization of a bat community and the coexistence of sympatric species, it is essential to understand how species use and share common resources. First, we describe a bat community in a primary rainforest of French Guiana. The presence of particular roosting sites, such as caves, and the absence of disturbances are important local factors in structuring communities. In the course of this study, we focused on the three most common species of three vegetarian bat guilds (understorey frugivores, canopy frugivores and nectarivores). The local coexistence of these species is possible thanks to space, food and/or time partitioning. Space partitioning is consistent with the hypothesis that smaller bats with a more manoeuvrable flight tend to occupy more cluttered space less attractive to their competitors and have smaller home range. We observed a time partitioning that is likely to reduce competition among some frugivorous bat species by reducing direct interference during foraging. Besides an interest for the field community ecology, this study of a community living in a primary forest can be used as a reference for non disturbed habitat for conservation purposes.  
  Address Dept Ecol & Gestion Biodivers, UMR 5176, F-91800 Brunoy, France, Email: marguerite.delaval@wanadoo.fr  
  Corporate Author Thesis  
  Publisher SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0249-7395 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000230973300005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 231  
Permanent link to this record
 

 
Author Bordenave, B.; Lehir, F.; Lorans, M. url  openurl
  Title Current knowledge on threatened plant species of French Guiana Type Journal Article
  Year 2012 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal (down) Rev. Ecol. Terre Vie  
  Volume 67 Issue Suppl.2 Pages 29-45  
  Keywords  
  Abstract The elaboration of a first list of the most threatened species of the overseas territory of French Guyana was undertaken in 2009 by the Association for Botanical Conservation in French Guiana in collaboration with the National Botanical Conservatory of Brest. Carried out in synergy with the updating of the species list for Natural Areas of Ecological, Faunistic and Floritic Interests supervised by the Region Science Council for Natural Heritage, this work includes 97 vascular plants, 18 of which can be considered as threatened in the state of current knowledge, according to the IUCN criteria which are recommended by the Federation of National Botanical Conservatories. Among these 18 taxa, threatened because of their rarity and the fragility of their natural habitats, 17 are already protected by a 2001 ministry decree and one is from a new genus, Hekkingia bordenavei; nine of these appear to be of high concern for conservation: Cleistes grandifiora (Orchidaceae), Cornutia pubescens (Verbenaceae), Antirhea triflora (Rubiaceae), Himathantus drasticus (Apocynaceae), Axonopus oiapocensis (Poaceae), Psychotria granvillei (Rubiaceae), Eriocaulon guyanense (Eriocaulaceae) along with two palm species subject to National Action Plans for their conservation since 2009, Astrocaryum minus and Bactris nancibaensis. This study also contributes to the on-going “regional Red List” of the French Guiana flora.  
  Address Étudiant en Master 2, Écologie des Forêts Tropicales, Université de Kourou, 1 rue de l'Université, 97310 Kourou, Guyane Française, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02497395 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 April 2012; Source: Scopus; Coden: Retve; Language of Original Document: French; Correspondence Address: Bordenave, B.; BGB Consultance, Botanique Tropicale, 9 route des grandes roches, 29910 Trégunc, France; email: bruno.bordenave@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 390  
Permanent link to this record
 

 
Author Fayad, I.; Baghdadi, N.; Bailly, J.-S.; Barbier, N.; Gond, V.; Herault, B.; El Hajj, M.; Fabre, F.; Perrin, J. pdf  url
doi  openurl
  Title Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana Type Journal Article
  Year 2016 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing  
  Volume 8 Issue 3 Pages 240  
  Keywords Airborne LiDAR; Canopy height mapping; Forests; French Guiana; ICESat GLAS  
  Abstract LiDAR data has been successfully used to estimate forest parameters such as canopy heights and biomass. Major limitation of LiDAR systems (airborne and spaceborne) arises from their limited spatial coverage. In this study, we present a technique for canopy height mapping using airborne and spaceborne LiDAR data (from the Geoscience Laser Altimeter System (GLAS)). First, canopy heights extracted from both airborne and spaceborne LiDAR were extrapolated from available environmental data. The estimated canopy height maps using Random Forest (RF) regression from airborne or GLAS calibration datasets showed similar precisions (~6 m). To improve the precision of canopy height estimates, regression-kriging was used. Results indicated an improvement in terms of root mean square error (RMSE, from 6.5 to 4.2 m) using the GLAS dataset, and from 5.8 to 1.8 m using the airborne LiDAR dataset. Finally, in order to investigate the impact of the spatial sampling of future LiDAR missions on canopy height estimates precision, six subsets were derived from the initial airborne LiDAR dataset. Results indicated that using the regression-kriging approach a precision of 1.8 m on the canopy height map was achievable with a flight line spacing of 5 km. This precision decreased to 4.8 m for flight line spacing of 50 km. © 2016 by the authors.  
  Address BRGM, 3 Avenue Claude Guillemin, Orléans, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 22 April 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 675  
Permanent link to this record
 

 
Author Soudani, K.; Hmimina, G.; Delpierre, N.; Pontailler, J.-Y.; Aubinet, M.; Bonal, D.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; Guyon, D.; Granier, A.; Gross, P.; Heinesh, B.; Longdoz, B.; Loustau, D.; Moureaux, C.; Ourcival, J.-M.; Rambal, S.; Saint André, L.; Dufrêne, E. url  openurl
  Title Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes Type Journal Article
  Year 2012 Publication Remote Sensing of Environment Abbreviated Journal (down) Remote Sens. Environ.  
  Volume 123 Issue Pages 234-245  
  Keywords Crops; Evergreen and deciduous forests; Ground-based NDVI; Herbaceous savanna; NDVI time-series; Phenology; Tropical rain forest  
  Abstract Plant phenology characterises the seasonal cyclicity of biological events such as budburst, flowering, fructification, leaf senescence and leaf fall. These biological events are genetically pre-determined but also strongly modulated by climatic conditions, particularly temperature, daylength and water availability. Therefore, the timing of these events is considered as a good indicator of climate change impacts and as a key parameter for understanding and modelling vegetation-climate interactions. In situ observations, empirical or bioclimatic models and remotely sensed time-series data constitute the three possible ways for monitoring the timing of plant phenological events. Remote sensing has the advantage of being the only way of surface sampling at high temporal frequency and, in the case of satellite-based remote sensing, over large regions. Nevertheless, exogenous factors, particularly atmospheric conditions, lead to some uncertainties on the seasonal course of surface reflectance and cause bias in the identification of vegetation phenological events. Since 2005, a network of forest and herbaceous sites has been equipped with laboratory made NDVI sensors to monitor the temporal dynamics of canopy structure and phenology at an intra-daily time step. In this study, we present recent results obtained in several contrasting biomes in France, French Guiana, Belgium and Congo. These sites represent a gradient of vegetation ecosystems: the main evergreen and deciduous forest ecosystems in temperate climate region, an evergreen tropical rain forest in French Guiana, an herbaceous savanna ecosystem in Congo, and a succession of three annual crops in Belgium. In this paper, (1) we provide an accurate description of the seasonal dynamics of vegetation cover in these different ecosystems (2) we identify the most relevant remotely sensed markers from NDVI time-series for determining the dates of the main phenological events that characterize these ecosystems and (3) we discuss the relationships between temporal canopy dynamics and climate factors. In addition to its importance for phenological studies, this ground-based Network of NDVI measurement provides data needed for the calibration and direct validation of satellite observations and products. © 2012 Elsevier Inc.  
  Address INRA, Unité Biogéochimie des Ecosystèmes Forestiers, Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00344257 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 August 2012; Source: Scopus; Coden: Rseea; doi: 10.1016/j.rse.2012.03.012; Language of Original Document: English; Correspondence Address: Soudani, K.; University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of OrsayFrance; email: kamel.soudani@u-psud.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 422  
Permanent link to this record
 

 
Author Vincent, G.; Sabatier, D.; Blanc, L.; Chave, J.; Weissenbacher, E.; Pélissier, R.; Fonty, E.; Molino, J.-F.; Couteron, P. url  openurl
  Title Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure Type Journal Article
  Year 2012 Publication Remote Sensing of Environment Abbreviated Journal (down) Remote Sens. Environ.  
  Volume 125 Issue Pages 23-33  
  Keywords Basal area; Lidar; Tropical moist forest  
  Abstract We predict stand basal area (BA) from small footprint LiDAR data in 129 one-ha tropical forest plots across four sites in French Guiana and encompassing a great diversity of forest structures resulting from natural (soil and geological substrate) and anthropogenic effects (unlogged and logged forests). We use predictors extracted from the Canopy Height Model to compare models of varying complexity: single or multiple regressions and nested models that predict BA by independent estimates of stem density and quadratic mean diameter. Direct multiple regression was the most accurate, giving a 9.6% Root Mean Squared Error of Prediction (RMSEP). The magnitude of the various errors introduced during the data collection stage is evaluated and their contribution to MSEP is analyzed. It was found that these errors accounted for less than 10% of model MSEP, suggesting that there is considerable scope for model improvement. Although site-specific models showed lower MSEP than global models, stratification by site may not be the optimal solution. The key to future improvement would appear to lie in a stratification that captures variations in relations between LiDAR and forest structure. © 2012 Elsevier Inc.  
  Address ONF, Direction régionale de la Guyane, Cayenne, 97300 France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00344257 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 August 2012; Source: Scopus; Article in Press; Coden: Rseea; doi: 10.1016/j.rse.2012.06.019; Language of Original Document: English; Correspondence Address: Vincent, G.; IRD AMAP CIRAD, TA A-51/PS2, 34398 Montpellier cedex 5, Franceemail: gregoire.vincent@ird.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 418  
Permanent link to this record
 

 
Author Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y.; Simic-Milas, A.; Noland, T.L.; He, Y.; Homolová, L.; Malenovský, Z.; Yi, Q.; Beringer, J.; Amiri, R.; Hutley, L.; Arellano, P.; Stahl, C.; Bonal, D. url  doi
openurl 
  Title The global distribution of leaf chlorophyll content Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal (down) Remote Sens. Environ.  
  Volume 236 Issue 111479 Pages  
  Keywords  
  Abstract Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially-continuous view of terrestrial leaf chlorophyll content (ChlLeaf) at the global scale. Weekly maps of ChlLeaf were produced from ENVISAT MERIS full resolution (300 m) satellite data using a two-stage physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was input into the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm was validated using measured ChlLeaf data from 248 sample measurements at 28 field locations, and covering six plant functional types (PFTs). Modelled results show strong relationships with field measurements, particularly for deciduous broadleaf forests (R2 = 0.67; RMSE = 9.25 microg cm-2; p < 0.001), croplands (R2 = 0.41; RMSE = 13.18 microg cm-2; p < 0.001) and evergreen needleleaf forests (R2 = 0.47; RMSE = 10.63 microg cm-2; p < 0.001). When the modelled results from all PFTs were considered together, the overall relationship with measured ChlLeaf remained good (R2 = 0.47, RMSE = 10.79 microg cm-2; p < 0.001). This result is an improvement on the relationship between measured ChlLeaf and a commonly used chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R2 = 0.27, p < 0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf forests presenting the highest leaf chlorophyll values, with global annual median values of 54.4 microg cm-2. Distinct seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, energy and carbon cycle modelling.  
  Address UMR EEF, INRA Université de Lorraine, Champenoux54280, France  
  Corporate Author Thesis  
  Publisher Elsevier Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00344257 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 898  
Permanent link to this record
 

 
Author Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. pdf  url
doi  openurl
  Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sens.  
  Volume 11 Issue 3 Pages 367  
  Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry  
  Abstract Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email: florent.taureau@univ-nantes.fr; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no  
  Call Number EcoFoG @ webmaster @ Serial 861  
Permanent link to this record
 

 
Author Laybros, A.; Aubry-Kientz, M.; Féret, J.-B.; Bedeau, C.; Brunaux, O.; Derroire, G.; Vincent, G. doi  openurl
  Title Quantitative airborne inventories in dense tropical forest using imaging spectroscopy Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sens.  
  Volume 12 Issue 10 Pages 1577  
  Keywords Hyperspectral; LiDAR; Species diversity; Tropical forest; Cost effectiveness; Discriminant analysis; Infrared devices; Infrared radiation; Logistic regression; Remote sensing; Tropics; Classification accuracy; Classification performance; Linear discriminant analysis; Operational applications; Regularized discriminant analysis; Remote sensing technology; Short wave infrared bands; Visible and near infrared; Forestry  
  Abstract Tropical forests have exceptional floristic diversity, but their characterization remains incomplete, in part due to the resource intensity of in-situ assessments. Remote sensing technologies can provide valuable, cost-effective, large-scale insights. This study investigates the combined use of airborne LiDAR and imaging spectroscopy to map tree species at landscape scale in French Guiana. Binary classifiers were developed for each of 20 species using linear discriminant analysis (LDA), regularized discriminant analysis (RDA) and logistic regression (LR). Complementing visible and near infrared (VNIR) spectral bands with short wave infrared (SWIR) bands improved the mean average classification accuracy of the target species from 56.1% to 79.6%. Increasing the number of non-focal species decreased the success rate of target species identification. Classification performance was not significantly affected by impurity rates (confusion between assigned classes) in the non-focal class (up to 5% of bias), provided that an adequate criterion was used for adjusting threshold probability assignment. A limited number of crowns (30 crowns) in each species class was sufficient to retrieve correct labels effectively. Overall canopy area of target species was strongly correlated to their basal area over 118 ha at 1.5 ha resolution, indicating that operational application of the method is a realistic prospect (R2 = 0.75 for six major commercial tree species). © 2020 by the authors.  
  Address Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana, 97379, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 969  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: