toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Foucaud, J.; Orivel, J.; Fournier, D.; Delabie, J.H.C.; Loiseau, A.; Le Breton, J.; Cerdan, P.; Estoup, A. openurl 
  Title Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata Type Journal Article
  Year 2009 Publication Molecular Ecology Abbreviated Journal (down) Mol. Ecol.  
  Volume 18 Issue 24 Pages 5059-5073  
  Keywords biological invasion; clonality; human disturbance; parthenogenesis; social organization; Wasmannia auropunctata  
  Abstract The invasive ant species Wasmannia auropunctata displays both ecologically dominant and non-dominant populations within its native range. Three factors could theoretically explain the ecological dominance of some native populations of W. auropunctata: (i) its clonal reproductive system, through demographic and/or adaptive advantages; (ii) its unicolonial social organization, through lower intraspecific and efficient interspecific competition; (iii) the human disturbance of its native range, through the modification of biotic and abiotic environmental conditions. We used microsatellite markers and behavioural tests to uncover the reproductive modes and social organization of dominant and non-dominant native populations in natural and human-modified habitats. Microsatellite and mtDNA data indicated that dominant and non-dominant native populations (supercolonies as determined by aggression tests) of W. auropunctata did not belong to different evolutionary units. We found that the reproductive system and the social organization are neither necessary nor sufficient to explain W. auropunctata ecological dominance. Dominance rather seems to be set off by unknown ecological factors altered by human activities, as all dominant populations were recorded in human-modified habitats. The clonal reproductive system found in some populations of W. auropunctata may however indirectly contribute to its ecological dominance by allowing the species to expand its environmental niche, through the fixation over time of specific combinations of divergent male and female genotypes. Unicoloniality may rather promote the range expansion of already dominant populations than actually trigger ecological dominance. The W. auropunctata model illustrates the strong impact of human disturbance on species' ecological features and the adaptive potential of clonal reproductive systems.  
  Address [Foucaud, Julien; Fournier, Denis; Loiseau, Anne; Estoup, Arnaud] Montpellier SupAgro, Cirad, IRD, INRA,UMR CBGP, F-34988 Montferrier Sur Lez, France, Email: julien.foucaud@legs.cnrs-gif.fr  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000272452700009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 191  
Permanent link to this record
 

 
Author Latouche-Halle, C.; Ramboer, A.; Bandou, E.; Caron, H.; Kremer, A. openurl 
  Title Long-distance pollen flow and tolerance to selfing in a neotropical tree species Type Journal Article
  Year 2004 Publication Molecular Ecology Abbreviated Journal (down) Mol. Ecol.  
  Volume 13 Issue 5 Pages 1055-1064  
  Keywords Dicorynia guianensis; microsatellites; outcrossing rate; pollen flow; reproductive success; tropical tree  
  Abstract Outcrossing rates, pollen dispersal and male mating success were assessed in Dicorynia guianensis Amshoff, a neotropical tree endemic to the Guiana shield. All adult trees within a continuous area of 40 ha (n = 157) were mapped, and were genotyped with six microsatellite loci. In addition, progenies were genotyped from 22 mature trees. At the population level, the species was mostly outcrossing (t(m) = 0.89) but there was marked variation among individuals. One tree exhibited mixed mating, confirming earlier results obtained with isozymes that D. guianensis can tolerate selfing. A Bayesian extension of the fractional paternity method was used for paternity analysis, and was compared with the neighbourhood method used widely for forest trees. Both methods indicated that pollen dispersal was only weakly related to distance between trees within the study area, and that the majority (62%) of pollen came from outside the study stand. Using maximum likelihood, male potential population size was estimated to be 1119, corresponding to a neighbourhood size of 560 hectares. Male mating success was, however, related to the diameter of the stem and to flowering intensity assessed visually. The mating behaviour of D. guianensis is a combination of long-distance pollen flow and occasional selfing. The species can still reproduce when it is extremely rare, either by selfing or by dispersing pollen at long distances. These results, together with the observation that male mating success was correlated with the size of the trees, could be implemented in management procedures aiming at regenerating the species.  
  Address INRA, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: caron@pierroton.mra.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000221016300007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 237  
Permanent link to this record
 

 
Author Dutech, C.; Seiter, J.; Petronelli, P.; Joly, H.I.; Jarne, P. openurl 
  Title Evidence of low gene flow in a neotropical clustered tree species in two rainforest stands of French Guiana Type Journal Article
  Year 2002 Publication Molecular Ecology Abbreviated Journal (down) Mol. Ecol.  
  Volume 11 Issue 4 Pages 725-738  
  Keywords Caesalpiniaceae; gene flow; recolonization process; spatial genetic structure; tropical rainforest; Vouacapoua americana  
  Abstract The spatial genetic structure of the neotropical, clustered tree species Vouacapoua americana (Aublet) was studied in two natural forest stands (Paracou and Nouragues) in French Guiana. Using eight microsatellite loci, V. americana is characterized by a marked genetic structure at small spatial distances (under 30-60 m), in agreement with the limited seed dispersal by rodent species. Gene flow through pollen is also shown to be mainly restricted to less than 100 m. This result suggests that most pollination events (mediated through small insects) are probably limited to within-patches of individuals, which might explain the high genetic differentiation among patches (F-ST = 0.11) separated by less than 2 km. We also assume that stronger genetic structure in Paracou is likely to be due to lower seed dispersal by rodents, large spatial distances separating patches, or a recent recolonization event.  
  Address CNRS, Ctr Ecol Fonct & Evolut, F-34293 Montpellier 5, France, Email: jarne@cefe.cnrs-mop.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000175250300008 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 248  
Permanent link to this record
 

 
Author Birer, C.; Moreau, C.S.; Tysklind, N.; Zinger, L.; Duplais, C. doi  openurl
  Title Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest Type Journal Article
  Year 2020 Publication Molecular Ecology Abbreviated Journal (down) Mol. Ecol.  
  Volume 29 Issue 7 Pages 1372-1385  
  Keywords ant gardens; bacterial communities; cuticular microbiome; insect cuticle; metabarcoding  
  Abstract Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants. © 2020 John Wiley & Sons Ltd  
  Address Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09621083 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 975  
Permanent link to this record
 

 
Author Strasburg, J.L.; Scotti-Saintagne, C.; Scotti, I.; Lai, Z.; Rieseberg, L.H. openurl 
  Title Genomic Patterns of Adaptive Divergence between Chromosomally Differentiated Sunflower Species Type Journal Article
  Year 2009 Publication Molecular Biology and Evolution Abbreviated Journal (down) Mol. Biol. Evol.  
  Volume 26 Issue 6 Pages 1341-1355  
  Keywords species boundaries; chromosomal rearrangements; positive selection; hybridization; sunflowers; Helianthus  
  Abstract Understanding the genetic mechanisms of speciation and basis of species differences is among the most important challenges in evolutionary biology. Two questions of particular interest are what roles divergent selection and chromosomal differentiation play in these processes. A number of recently proposed theories argue that chromosomal rearrangements can facilitate the development and maintenance of reproductive isolation and species differences by suppressing recombination within rearranged regions. Reduced recombination permits the accumulation of alleles contributing to isolation and adaptive differentiation and protects existing differences from the homogenizing effects of introgression between incipient species. Here, we examine patterns of genetic diversity and divergence in rearranged versus collinear regions in two widespread, extensively hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris, using sequence data from 77 loci distributed throughout the genomes of the two species. We find weak evidence for increased genetic divergence near chromosomal break points but not within rearranged regions overall. We find no evidence for increased rates of adaptive divergence on rearranged chromosomes; in fact, collinear chromosomes show a far greater excess of fixed amino acid differences between the two species. A comparison with a third sunflower species indicates that much of the nonsynonymous divergence between H. annuus and H. petiolaris probably occurred during or soon after their formation. Our results suggest a limited role for chromosomal rearrangements in genetic divergence, but they do document substantial adaptive divergence and provide further evidence of how species integrity and genetic identity can be maintained at many loci in the face of extensive hybridization and gene flow.  
  Address [Strasburg, Jared L.; Scotti-Saintagne, Caroline; Rieseberg, Loren H.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA, Email: jstrasbu@indiana.edu  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0737-4038 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000266116500012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 111  
Permanent link to this record
 

 
Author Rey, O.; Loiseau, A.; Facon, B.; Foucaud, J.; Orivel, J.; Cornuet, J.M.; Robert, S.; Dobigny, G.; Delabie, J.H.C.; Mariano, C.D.F.; Estoup, A. openurl 
  Title Meiotic Recombination Dramatically Decreased in Thelytokous Queens of the Little Fire Ant and Their Sexually Produced Workers Type Journal Article
  Year 2011 Publication Molecular Biology and Evolution Abbreviated Journal (down) Mol. Biol. Evol.  
  Volume 28 Issue 9 Pages 2591-2601  
  Keywords parthenogenesis; thelytoky; recombination; inbreeding; biological invasion; Wasmannia auropunctata  
  Abstract The little fire ant, Wasmannia auropunctata, displays a peculiar breeding system polymorphism. Classical haplo-diploid sexual reproduction between reproductive individuals occurs in some populations, whereas, in others, queens and males reproduce clonally. Workers are produced sexually and are sterile in both clonal and sexual populations. The evolutionary fate of the clonal lineages depends strongly on the underlying mechanisms allowing reproductive individuals to transmit their genomes to subsequent generations. We used several queen-offspring data sets to estimate the rate of transition from heterozygosity to homozygosity associated with recombination events at 33 microsatellite loci in thelytokous parthenogenetic queen lineages and compared these rates with theoretical expectations under various parthenogenesis mechanisms. We then used sexually produced worker families to define linkage groups for these 33 loci and to compare meiotic recombination rates in sexual and parthenogenetic queens. Our results demonstrate that queens from clonal populations reproduce by automictic parthenogenesis with central fusion. These same parthenogenetic queens produce normally segregating meiotic oocytes for workers, which display much lower rates of recombination (by a factor of 45) than workers produced by sexual queens. These low recombination rates also concern the parthenogenetic production of queen offspring, as indicated by the very low rates of transition from heterozygosity to homozygosity observed (from 0% to 2.8%). We suggest that the combination of automixis with central fusion and a major decrease in recombination rates allows clonal queens to benefit from thelytoky while avoiding the potential inbreeding depression resulting from the loss of heterozygosity during automixis. In sterile workers, the strong decrease of recombination rates may also facilitate the conservation over time of some coadapted allelic interactions within chromosomes that might confer an adaptive advantage in habitats disturbed by human activity, where clonal populations of W. auropunctata are mostly found.  
  Address [Rey, O; Loiseau, A; Facon, B; Foucaud, J; Cornuet, JM; Robert, S; Dobigny, G] INRA, UMR Ctr Biol Gest Populat INRA IRD CIRAD Montpe, Montferrier Sur Lez, France, Email: olivier.rey@supagro.inra.fr  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0737-4038 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294552700019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 339  
Permanent link to this record
 

 
Author Birer, C.; Tysklind, N.; Zinger, L.; Duplais, C. doi  openurl
  Title Comparative analysis of DNA extraction methods to study the body surface microbiota of insects: A case study with ant cuticular bacteria Type Journal Article
  Year 2017 Publication Molecular Ecology Resources Abbreviated Journal (down) Mol Ecol Resour  
  Volume 17 Issue 6 Pages e34-e45  
  Keywords 16S rRNA; bacterial communities; cuticular microbiome; insect cuticle; metabarcoding  
  Abstract High-throughput sequencing of the 16S rRNA gene has considerably helped revealing the essential role of bacteria living on insect cuticles in the ecophysiology and behaviour of their hosts. However, our understanding of host-cuticular microbiota feedbacks remains hampered by the difficulties of working with low bacterial DNA quantities as with individual insect cuticle samples, which are more prone to molecular biases and contaminations. Herein, we conducted a methodological benchmark on the cuticular bacterial loads retrieved from two Neotropical ant species of different body size and ecology: Atta cephalotes (~15 mm) and Pseudomyrmex penetrator (~5 mm). We evaluated the richness and composition of the cuticular microbiota, as well as the amount of biases and contamination produced by four DNA extraction protocols. We also addressed how bacterial community characteristics would be affected by the number of individuals or individual body size used for DNA extraction. Most extraction methods yielded similar results in terms of bacterial diversity and composition for A. cephalotes (~15 mm). In contrast, greater amounts of artefactual sequences and contaminations, as well as noticeable differences in bacterial community characteristics were observed between extraction methods for P. penetrator (~5 mm). We also found that large (~15 mm) and small (~5 mm) A. cephalotes individuals harbour different bacterial communities. Our benchmark suggests that cuticular microbiota of single individual insects can be reliably retrieved provided that blank controls, appropriate data cleaning, and individual body size and functional role within insect society are considered in the experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-0998 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 781  
Permanent link to this record
 

 
Author Zinger, L.; Taberlet, P.; Schimann, H.; Bonin, A.; Boyer, F.; De Barba, M.; Gaucher, P.; Gielly, L.; Giguet-Covex, C.; Iribar, A.; Réjou-Méchain, M.; Rayé, G.; Rioux, D.; Schilling, V.; Tymen, B.; Viers, J.; Zouiten, C.; Thuiller, W.; Coissac, E.; Chave, J. url  doi
openurl 
  Title Body size determines soil community assembly in a tropical forest Type Journal Article
  Year 2019 Publication Molecular Ecology Abbreviated Journal (down) Mol Ecol  
  Volume 28 Issue 3 Pages 528-543  
  Keywords DNA metabarcoding; eDNA; French Guiana; multitaxa; neutral assembly; niche determinism; propagule size; soil diversity  
  Abstract Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic?distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 873  
Permanent link to this record
 

 
Author Schimann, H.; Bach, C.; Lengelle, J.; Louisanna, E.; Barantal, S.; Murat, C.; Buée, M. url  doi
openurl 
  Title Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence Type Journal Article
  Year 2017 Publication Microbial Ecology Abbreviated Journal (down) Microbial Ecology  
  Volume 73 Issue 2 Pages 310-320  
  Keywords Amazonian forest; Fungal communities; Host recurrence; Litter; Second-generation sequencing; Soil  
  Abstract The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems. © 2016, Springer Science+Business Media New York.  
  Address Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et Pays de l’Adour, Pau, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 19 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 734  
Permanent link to this record
 

 
Author Perrot, T.; Guillaume, S.; Nadine, A.; Jacques, B.; Philippe, G.; Stéphane, D.; Rodnay, S.; Mélanie, M.-R.; Eric, G. doi  openurl
  Title A reverse chemical ecology approach to explore wood natural durability Type Journal Article
  Year 2020 Publication Microbial Biotechnology Abbreviated Journal (down) Microb. Biotechnol.  
  Volume 13 Issue 5 Pages 1673-1677  
  Keywords glutathione transferase; Article; biodegradation; data base; detoxification; ecology; enzyme activity; enzyme metabolism; forest; molecular dynamics; physical parameters; species identification; thermal analysis; Trametes versicolor; wood; wood durability  
  Abstract The natural durability of wood species, defined as their inherent resistance to wood-destroying agents, is a complex phenomenon depending on many biotic and abiotic factors. Besides the presence of recalcitrant polymers, the presence of compounds with antimicrobial properties is known to be important to explain wood durability. Based on the advancement in our understanding of fungal detoxification systems, a reverse chemical ecology approach was proposed to explore wood natural durability using fungal glutathione transferases. A set of six glutathione transferases from the white-rot Trametes versicolor were used as targets to test wood extracts from seventeen French Guiana neotropical species. Fluorescent thermal shift assays quantified interactions between fungal glutathione transferases and these extracts. From these data, a model combining this approach and wood density significantly predicts the wood natural durability of the species tested previously using long-term soil bed tests. Overall, our findings confirm that detoxification systems could be used to explore the chemical environment encountered by wood-decaying fungi and also wood natural durability. © 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.  
  Address Université de Lorraine, INRAE, LERMAB, Nancy, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17517907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 955  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: