toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Fu, T.; Houel, E.; Amusant, N.; Touboul, D.; Genta-Jouve, G.; Della-Negra, S.; Fisher, G.L.; Brunelle, A.; Duplais, C. pdf  url
doi  openurl
  Title Biosynthetic investigation of γ-lactones in Sextonia rubra wood using in situ TOF-SIMS MS/MS imaging to localize and characterize biosynthetic intermediates Type (up) Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 1928  
  Keywords  
  Abstract Molecular analysis by parallel tandem mass spectrometry (MS/MS) imaging contributes to the in situ characterization of biosynthetic intermediates which is crucial for deciphering the metabolic pathways in living organisms. We report the first use of TOF-SIMS MS/MS imaging for the cellular localization and characterization of biosynthetic intermediates of bioactive γ-lactones rubrynolide and rubrenolide in the Amazonian tree Sextonia rubra (Lauraceae). Five γ-lactones, including previously reported rubrynolide and rubrenolide, were isolated using a conventional approach and their structural characterization and localization at a lateral resolution of ~400 nm was later achieved using TOF-SIMS MS/MS imaging analysis. 2D/3D MS imaging at subcellular level reveals that putative biosynthetic γ-lactones intermediates are localized in the same cell types (ray parenchyma cells and oil cells) as rubrynolide and rubrenolide. Consequently, a revised metabolic pathway of rubrynolide was proposed, which involves the reaction between 2-hydroxysuccinic acid and 3-oxotetradecanoic acid, contrary to previous studies suggesting a single polyketide precursor. Our results provide insights into plant metabolite production in wood tissues and, overall, demonstrate that combining high spatial resolution TOF-SIMS imaging and MS/MS structural characterization offers new opportunities for studying molecular and cellular biochemistry in plants. © 2019, The Author(s).  
  Address Physical Electronics, Chanhassen, MN 55317, United States  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 866  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: