toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. pdf  url
doi  openurl
  Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 11 Issue 3 Pages 367  
  Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry  
  Abstract Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email:; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no  
  Call Number EcoFoG @ webmaster @ Serial 861  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: