toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Fargeon, H.; Aubry-Kientz, M.; Brunaux, O.; Descroix, L.; Gaspard, R.; Guitet, S.; Rossi, V.; Herault, B. pdf  url
doi  openurl
  Title Vulnerability of commercial tree species to water stress in logged forests of the Guiana shield Type Journal Article
  Year 2016 Publication Forests Abbreviated Journal Forests  
  Volume 7 Issue 5 Pages  
  Keywords Climate change; Growth rates; Mortality rates; Paracou; Selective logging  
  Abstract The future of tropical managed forests is threatened by climate change. In anticipation of the increase in the frequency of drought episodes predicted by climatic models for intertropical regions, it is essential to study commercial trees' resilience and vulnerability to water stress by identifying potential interaction effects between selective logging and stress due to a lack of water. Focusing on 14 species representing a potential or acknowledged commercial interest for wood production in the Guiana Shield, a joint model coupling growth and mortality for each species was parametrized, including a climatic variable related to water stress and the quantity of aboveground biomass lost after logging. For the vast majority of the species, water stress had a negative impact on growth rate, while the impact of logging was positive. The opposite results were observed for the mortality. Combining results from growth and mortality models, we generate vulnerability profiles and ranking from species apparently quite resistant to water stress (Chrysophyllum spp., Goupia glabra Aubl., Qualea rosea Aubl.), even under logging pressure, to highly vulnerable species (Sterculia spp.). In light of our results, forest managers in the Guiana Shield may want to conduct (i) a conservation strategy of the most vulnerable species and (ii) a diversification of the logged species. Conservation of the already-adapted species may also be considered as the most certain way to protect the tropical forests under future climates. © 2016 by the authors.  
  Address Université de Yaoundé I, UMMISCO (UMI 209), Yaoundé, Cameroon  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 11 June 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 682  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: