|   | 
Details
   web
Record
Author (up) Siefert, A.; Violle, C.; Chalmandrier, L.; Albert, C.H.; Taudiere, A.; Fajardo, A.; Aarssen, L.W.; Baraloto, C.; Carlucci, M.B.; Cianciaruso, M.V.; de L. Dantas, V.; de Bello, F.; Duarte, L.D.S.; Fonseca, C.R.; Freschet, G.T.; Gaucherand, S.; Gross, N.; Hikosaka, K.; Jackson, B.; Jung, V.; Kamiyama, C.; Katabuchi, M.; Kembel, S.W.; Kichenin, E.; Kraft, N.J.B.; Lagerström, A.; Bagousse-Pinguet, Y.L.; Li, Y.; Mason, N.; Messier, J.; Nakashizuka, T.; Overton, J.M.; Peltzer, D.A.; Pérez-Ramos, I.M.; Pillar, V.D.; Prentice, H.C.; Richardson, S.; Sasaki, T.; Schamp, B.S.; Schöb, C.; Shipley, B.; Sundqvist, M.; Sykes, M.T.; Vandewalle, M.; Wardle, D.A.
Title A global meta-analysis of the relative extent of intraspecific trait variation in plant communities Type Journal Article
Year 2015 Publication Ecology Letters Abbreviated Journal Ecology Letters
Volume 18 Issue 12 Pages 1406-1419
Keywords Community ecology; Functional diversity; Interspecific variation; Intraspecific variability; Leaf trait; Plant functional trait; Trait-based ecology
Abstract Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies. © 2015 John Wiley & Sons Ltd/CNRS.
Address Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, Lund, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 16 November 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 637
Permanent link to this record