toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, Lingjuan ; Preece, Catherine ; Lin, Qiang ; Bréchet, Laëtitia M. ; Stahl, Clément ; Courtois, Elodie A. ; Verbruggen, Erik doi  openurl
  Title Resistance and resilience of soil prokaryotic communities in response to prolonged drought in a tropical forest Type Journal Article
  Year 2021 Publication FEMS Microbiology Ecology Abbreviated Journal  
  Volume 97 Issue 9 Pages  
  Keywords (up) drought, microbial communities, microbial network, tropical forest, resistance, resilience  
  Abstract Global climate changes such as prolonged duration and intensity of drought can lead to adverse ecological consequences in forests. Currently little is known about soil microbial community responses to such drought regimes in tropical forests. In this study, we examined the resistance and resilience of topsoil prokaryotic communities to a prolongation of the dry season in terms of diversity, community structure and co-occurrence patterns in a French Guianan tropical forest. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to controls. Our results show that prokaryotic communities increasingly diverged from controls with the progression of rain exclusion. Furthermore, prolonged drought significantly affected microbial co-occurrence networks. However, both the composition and co-occurrence networks of soil prokaryotic communities immediately ceased to differ from controls when precipitation throughfall returned. This study thus suggests modest resistance but high resilience of microbial communities to a prolonged drought in tropical rainforest soils.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford Academy Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1032  
Permanent link to this record
 

 
Author Hiltner, Ulrike ; Huth, Andreas ; Hérault, Bruno ; Holtmann, Anne ; Brauning, Achim ; Fischer, Rico doi  openurl
  Title Climate change alters the ability of neotropical forests to provide timber and sequester carbon Type Journal Article
  Year 2021 Publication Forest Ecology and Management Abbreviated Journal  
  Volume 492 Issue Pages 119166  
  Keywords (up) Exploitation forestière ; Changement climatique ; séquestration du carbone ; Production du bois ; Atténuation des effets du changement climatique ; gestion forestière durable ; forêt tropicale ; Région néotropicale ; Biomasse ; biomasse aérienne des arbres ; gestion de la santé des forêts ; modèle de croissance forestière ; biodiversité forestière  
  Abstract Logging is widespread in tropical regions, with approximately 50% of all humid tropical forests (1.73 × 109 ha) regarded as production forests. To maintain the ecosystem functions of carbon sequestration and timber supply in tropical production forests over a long term, forest management must be sustainable under changing climate conditions. Individual-based forest models are useful tools to enhance our understanding about the long-term effects of harvest and climate change on forest dynamics because they link empirical field data with simulations of ecological processes. The objective of this study is to analyze the combined effects of selective logging and climate change on biomass stocks and timber harvest in a tropical forest in French Guiana. By applying a forest model, we simulated natural forest dynamics under the baseline scenario of current climate conditions and compared the results with scenarios of selective logging under climate change. The analyses revealed how substantially forest dynamics are altered
under different scenarios of climate change. (1) Repeated logging within recovery times decreased biomass and timber harvest, irrespective of the intensity of climate change. (2) With moderate climate change as envisaged by the 5th IPCC Assessment Report (representative concentration pathway 2.6), the average biomass remained the same as in the baseline scenario (−1%), but with intensive climate change (RCP 8.5), the average biomass decreased by 12%. (3) The combination of selective logging and climate change increased the likelihood of changes in forest dynamics, driven mainly by rising temperatures. Under RCP 8.5, the average timber harvest was almost halved, regardless of the logging cycle applied. An application-oriented use of forest models will help to identify opportunities to reduce the effects of unwanted ecosystem changes in a changing environment. To ensure that ecosystem functions in production forests are maintained under climate change conditions, appropriate management strategies will help to maintain biomass and harvest in production forests.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1016  
Permanent link to this record
 

 
Author Derroire, Géraldine ; Piponiot, Camille ; Descroix, Laurent ; Bedeau, Caroline ; Traissac, Stéphane ; Brunaux, Olivier ; Hérault, Bruno doi  openurl
  Title Prospective carbon balance of the wood sector in a tropical forest territory using a temporally-explicit model Type Journal Article
  Year 2021 Publication Forest Ecology and Management Abbreviated Journal  
  Volume 497 Issue Pages  
  Keywords (up) Exploitation forestière, Production du bois, Modélisation environnementale, planification de la gestion forestière, forêt tropicale, Aménagement forestier, Plantations, Évaluation de l'impac  
  Abstract Selective logging in tropical forests is often perceived as a source of forest degradation and carbon emissions. Improved practices, such as reduced-impact logging (RIL), and alternative timber production strategies (e.g. plantations) can drastically change the overall carbon impact of the wood production sector. Assessing the carbon balance of timber production is crucial but highly dependent on methodological approaches, especially regarding system boundaries and temporality. We developed a temporally-explicit and territory scale model of carbon balance calibrated with long-term local data using Bayesian inference. The model accounts for carbon fluxes from selective logging in natural forest, timber plantation, first transformation and avoided emissions through energy substitution. We used it to compare prospective scenarios of development for the wood sector in French Guiana. Results show that intensification of practices, through increased logging intensity conducted with RIL and establishment of timber plantations, are promising development strategies to reduce the carbon emissions of the French-Guianese wood sector, as well as the area needed for wood production and hence the pressure on natural forests. By reducing logging damage by nearly 50%, RIL allows increasing logging intensity in natural forest from 20 m3 ha−1 to 30 m3 ha−1 without affecting the carbon balance. The use of logging byproducts as fuelwood also improved the carbon balance of selective logging, when substituted to fossil fuel. Allocating less than 30 000 ha to plantation would allow producing 200 000 m3 of timber annually, while the same production in natural forest would imply logging more than 400 000 ha over 60 years. Timber plantation should be preferentially established on non-forested lands, as converting natural forests to plantation leads to high carbon emission peak over the first three decades. We recommend a mixed-strategy combining selective logging in natural forests and plantations as a way to improve long-term carbon balance while reducing short-term emissions. This strategy can reduce the pressure on natural forests while mitigating the risks of changing practices and allowing a diversified source of timber for a diversity of uses. It requires adaptation of the wood sector and development of technical guidelines. Research and monitoring efforts are also needed to assess the impacts of changing practices on other ecosystem services, especially biodiversity conservation.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1019  
Permanent link to this record
 

 
Author Van Langenhove, Leandro ; Verryckt, Lore T. ; Stahl, Clement ; Courtois, Elodie A. ; Urbina, Ifigenia ; Grau, Oriol ; Asensio, Dolores ; Peguero, Guille ; Margalef, Olga ; Freycon, Vincent ; Penuelas, Josep ; Janssens, Ivan A. doi  openurl
  Title Soil nutrient variation along a shallow catena in Paracou, French Guiana Type Journal Article
  Year 2021 Publication Soil Research Abbreviated Journal  
  Volume 59 Issue 2 Pages 130  
  Keywords (up) French Guiana, lowland tropical forest, Paracou, phosphorus, topography, water drainage.  
  Abstract Tropical forests are generally considered to stand upon nutrient-poor soils, but soil nutrient concentrations and availabilities can vary greatly at local scale due to topographic effects on erosion and water drainage. In this study we physically and chemically characterised the soils of 12 study plots situated along a catena with a shallow slope in a tropical rainforest in French Guiana both during the wet and the dry season to evaluate seasonal differences. Soils along the catena were all Acrisols, but differed strongly in their water drainage flux. Over time, this differential drainage has led to differences in soil texture and mineral composition, affecting the adsorption of various nutrients, most importantly phosphorus. The more clayey soils situated on the slope of the catena had higher total concentrations of carbon, nitrogen, phosphorus and several micronutrients, while extractable nutrient concentrations were highest in the sandiest soils situated at the bottom of the catena. We found that carbon, nitrogen and extractable nutrients all varied seasonally, especially in the surface soil layer. These results are interesting because they show that, even at the local scale, small differences in topography can lead to large heterogeneity in nutrient concentrations, which can have large impacts on plant and microbial community organisation at the landscape level.  
  Address  
  Corporate Author Thesis  
  Publisher CSIRO Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1042  
Permanent link to this record
 

 
Author Chanson, Anaïs ; Moreau, Corrie S. ; Duplais, Christophe doi  openurl
  Title Assessing Biosynthetic Gene Cluster Diversity of Specialized Metabolites in the Conserved Gut Symbionts of Herbivorous Turtle Ants Type Journal Article
  Year 2021 Publication Frontiers in Microbiology Abbreviated Journal  
  Volume 12 Issue Pages 678100  
  Keywords (up) insect-microbe mutualism, ants, metagemonic, biosynthetic gene cluster, gut bacteria, Cephalotes  
  Abstract Cephalotes are herbivorous ants (>115 species) feeding on low-nitrogen food sources, and they rely on gut symbionts to supplement their diet by recycling nitrogen food waste into amino acids. These conserved gut symbionts, which encompass five bacterial orders, have been studied previously for their primary nitrogen metabolism; however, little is known about their ability to biosynthesize specialized metabolites which can play a role in bacterial interactions between communities living in close proximity in the gut. To evaluate the biosynthetic potential of their gut symbionts, we mine 14 cultured isolate genomes and gut metagenomes across 17 Cephalotes species to explore the biodiversity of biosynthetic gene clusters (BGCs) producing specialized metabolites. The diversity of BGCs across Cephalotes phylogeny was analyzed using sequence similarity networking and BGC phylogenetic reconstruction. Our results reveal that the conserved gut symbionts involved in the nutritional symbiosis possess 80% of all the 233 BGCs retrieved in this work. Furthermore, the phylogenetic analysis of BGCs reveals different patterns of distribution, suggesting different mechanisms of conservation. A siderophore BGC shows high similarity in a single symbiont across different ant host species, whereas a BGC encoding the production of non-ribosomal peptides (NRPs) found different symbionts within a single host species. Additionally, BGCs were abundant in four of the five bacterial orders of conserved symbionts co-occurring in the hindgut. However, one major symbiont localized alone in the midgut lack BGCs. Because the spatial isolation prevents direct interaction with other symbionts, this result supports the idea that BGCs are maintained in bacteria living in close proximity but are dispensable for an alone-living symbiont. These findings together pave the way for studying the mechanisms of BGC conservation and evolution in gut bacterial genomes associated with Cephalotes. This work also provides a genetic background for further study, aiming to characterize bacterial specialized metabolites and to understand their functional role in multipartite mutualisms between conserved gut symbionts and Cephalotes turtle ants.  
  Address  
  Corporate Author Thesis  
  Publisher Frontiers Media Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1049  
Permanent link to this record
 

 
Author Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina doi  openurl
  Title Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species Type Journal Article
  Year 2021 Publication Annals of Forest Science Abbreviated Journal  
  Volume 78 Issue 4 Pages 78-87  
  Keywords (up) Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem  
  Abstract Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1034  
Permanent link to this record
 

 
Author Cecilia Blundo ; Julieta Carilla ; Ricardo Grau ; Agustina Malizia ; Lucio Malizia ; Oriana Osinaga-Acosta ; Michael Bird ; Bradford, Matt ; Damien Catchpole ; Andrew Ford ; Andrew Graham ; David Hilbert ; Jeanette Kemp ; Susan Laurance ; William Laurance ; Francoise Yoko Ishida ; Andrew Marshall ; Catherine Waite ; Hannsjoerg Woell ; Jean-Francois Bastin ; Marijn Bauters ; Hans Beeckman ; Pfascal Boeckx ; Jan Bogaert ; Charles De Canniere ; Thales de Haulleville ; Jean-Louis Doucet ; Olivier Hardy ; Wannes Hubau ; Elizabeth Kearsley ; Hans Verbeeck ; Jason Vleminckx ; Steven W. Brewer ; Alfredo Alarc´on ; Alejandro Araujo-Murakami ; Eric Arets ; Luzmila Arroyo ; Ezequiel Chavez ; Todd Fredericksen ; Ren´e Guill´en Villaroel ; Gloria Gutierrez Sibauty ; Timothy Killeen ; Juan Carlos Licona ; John Lleigue ; Casimiro Mendoza ; Samaria Murakami ; Alexander Parada Gutierrez ; Guido Pardo ; Marielos Pena-Claros ; Lourens Poorter ; Marisol Toledo ; Jeanneth Villalobos Cayo ; Laura Jessica Viscarra ; Vincent Vos ; Jorge Ahumada ; Everton Almeida ; Jarcilene Almeida aq, Edmar Almeida de Oliveira ; Wesley Alves da Cruz ; Atila Alves de Oliveira ; Fabrício Alvim Carvalho ; Flavio Amorim Obermuller ; Ana Andrade ; Fernanda Antunes Carvalho ; Simone Aparecida Vieira ; Ana Carla Aquino ; Luiz Aragao ; Ana Claudia Araújo ; Marco Antonio Assis ; Jose Ataliba Mantelli Aboin Gomes ; Fabrício Baccaro ; Plínio Barbosa de Camargo ; Paulo Barni ; Jorcely Barroso ; Luis Carlos Bernacci ; Kauane Bordin ; Marcelo Brilhante de Medeiros ; Igor Broggio ; Jose Luís Camargo ; Domingos Cardoso ; Maria Antonia Carniello ; Andre Luis Casarin Rochelle ; Carolina Castilho ; Antonio Alberto Jorge Farias Castro ; Wendeson Castro ; Sabina Cerruto Ribeiro ; Flavia Costa ; Rodrigo Costa de Oliveira ; Italo Coutinho ; John Cunha ; Lola da Costa ; Lucia da Costa Ferreira ; Richarlly da Costa Silva ; Marta da Graça Zacarias Simbine ; Vitor de Andrade Kamimura ; Haroldo Cavalcante de Lima ; Lia de Oliveira Melo ; Luciano de Queiroz ; Jose Romualdo de Sousa Lima ; Mario do Espírito Santo ; Tomas Domingues ; Nayane Cristina dos Santos Prestes ; Steffan Eduardo Silva Carneiro ; Fernando Elias ; Gabriel Eliseu ; Thaise Emilio ; Camila Laís Farrapo ; Letícia Fernandes ; Gustavo Ferreira ; Joice Ferreira ; Leandro Ferreira ; Socorro Ferreira ; Marcelo Fragomeni Simon ; Maria Aparecida Freitas ; Queila S. García ; Angelo Gilberto Manzatto ; Paulo Graça ; Frederico Guilherme ; Eduardo Hase ; Niro Higuchi ; Mariana Iguatemy ; Reinaldo Imbrozio Barbosa ; Margarita Jaramillo doi  openurl
  Title Taking the pulse of Earth’s tropical forests using networks of highly distributed plots Type Journal Article
  Year 2021 Publication Biological Conservation Abbreviated Journal  
  Volume 260 Issue Pages  
  Keywords (up) parcelle, forêt tropicale, biodiversité forestière, Écosystème forestier, Écologie forestière, Changement de couvert végétal, Couvert forestier  
  Abstract Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1021  
Permanent link to this record
 

 
Author Lormée, Hervé ; Berzins, Rachel ; Rocheteau, Vincent ; De Coster, Fran ; Denis, Thomas ; Richard-Hanssen, Cécile doi  openurl
  Title Seasonal Variation in the Home Ranges of Black Curassow, Crax alector, in French Guiana Type Journal Article
  Year 2021 Publication Tropical Conservation Science Abbreviated Journal  
  Volume 14 Issue 1 Pages 1-10  
  Keywords (up) spatial ecology, Cracids, tracking, Kernel method, Home range, movement pattern  
  Abstract Cracidae is the most threatened avian family in the Neotropics, mainly because of habitat destruction, heavy hunting pressure and poaching. In French Guiana, Black Curassows are heavily hunted, although basic knowledge of the ecological and demographical traits of the species remains limited. Such a gap prevents any attempt to assess the impact of hunting and to help stakeholders to develop proposals ensuring hunting sustainability. The spatial relationship between animals and their habitat is important for conservation management, being related to population densities through complex patterns. Here, we report on a radio-tracking study of Black Curassows in tropical primary rainforest, in Nouragues National Reserve, French Guiana. The aims of the study were to estimate home range size and its variation across seasons, and to quantify movement patterns of the birds. We captured and fitted VHF tags to four adults, and tracked them for 10 to 21.5 months. Daily movements were recorded, and home ranges estimated using the Kernel Density method, for two consecutive wet seasons and one dry season. Using 95% and 50% Kernel densities, the average annual home range and core area were 96.3± 32.6 ha (SE) and 22.8 ± 2.8 ha respectively. Home ranges appeared spatially stable over the two years, and overlapped between neighbouring groups. During the dry season, Black Curassows did not migrate but tended to enlarge their home range, with greater daily movements and higher home range overlap. Although additional data are still needed, our results can help to improve the knowledge and management of this poorly studied species  
  Address  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1036  
Permanent link to this record
 

 
Author Bréchet, Laëtitia M.; Daniel Warren; Stahl, Clément; Burban, Benoït; Goret, Jean-Yves; Salomon, Roberto L.; Janssens, Ivan A.o doi  openurl
  Title Simultaéneous tree stem and soil greenhouse gas (CO2, CH4, N2O) flux measurements: a novel design for continuous monitoring towards improving flux estimates and temporal resolution Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal  
  Volume 230 Issue 6 Pages 2487-2500  
  Keywords (up) système de chambre automatisé ; efflux de dioxyde de carbone ; flux de méthane ; flux d'oxyde nitreux ; tige d'arbre ; forêt tropicale  
  Abstract Tree stems and soils can act as sources and sinks for the greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Since both uptake and emission capacities can be large, especially in tropical rainforests, accurate assessments of the magnitudes and temporal variations of stem and soil GHG fluxes are required. We designed a new flexible stem chamber system for continuously measuring GHG fluxes in a French Guianese rainforest. Here, we describe this new system, which is connected to an automated soil GHG flux system, and discuss measurement uncertainty and potential error sources. In line with findings for soil GHG flux estimates, we demonstrated that lengthening the stem chamber closure time was required for accurate estimates of tree stem CH4 and N2O flux but not tree stem CO2 flux. The instrumented stem was a net source of CO2 and CH4 and a weak sink of N2O. Our experimental setup operated successfully in situ and provided continuous tree and soil GHG measurements at a high temporal resolution over an 11-month period. This automated system is a major step forward in the measurement of GHG fluxes in stems and the atmosphere concurrently with soil GHG fluxes in tropical forest ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher New Phytologist Foundation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1004  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: