toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Almeras, T.; Yoshida, M.; Okuyama, T. openurl 
  Title Strains inside xylem and inner bark of a stem submitted to a change in hydrostatic pressure Type Journal Article
  Year (down) 2006 Publication Trees-Structure and Function Abbreviated Journal Trees-Struct. Funct.  
  Volume 20 Issue 4 Pages 460-467  
  Keywords diurnal strains; hydrostatic pressure; xylem; inner bark; mechanical properties  
  Abstract Tangential strains were measured with strain gauges at the surface of xylem and inner bark of saplings of Cryptomeria japonica D. Don. and Fagus silvatica L. during a pressurization test. The test consists in submitting the whole sapling to an artificially imposed hydrostatic pressure of increasing magnitude. The elastic response of the stems was found linear both at the surface of xylem and inner bark. A simple geometric model allows to compute radial strains in each tissue from tangential strain data. Inside inner bark, radial strains are much larger than tangential strains, because tangential strains are restrained by the core of wood. The material compliance of each tissue was computed as the ratio between the radial strain and the pressure that caused it. The material compliance of xylem is much lower than that of inner bark, but, as its thickness is much larger, its contribution to the apparent behavior of the stem is not negligible. Computation of material compliances by this pressurization test provides information about the specific behavior of each tissue in response to hydrostatic pressure. This can be used to estimate and interpret the calibration factor linking the water status of the plant to the apparent strain measured at its surface.  
  Address Nagoya Univ, Grad Sch Bioagr Sci, Lab Biomat Phys, Chikusa Ku, Nagoya, Aichi 4648601, Japan, Email: t_almeras@hotmail.com  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000237858100007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 225  
Permanent link to this record
 

 
Author Ponton, S.; Flanagan, L.B.; Alstad, K.P.; Johnson, B.G.; Morgenstern, K.; Kljun, N.; Black, T.A.; Barr, A.G. openurl 
  Title Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques Type Journal Article
  Year (down) 2006 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 12 Issue 2 Pages 294-310  
  Keywords boreal forest; conifer forest; eddy covariance; grassland; stable isotopes  
  Abstract Comparisons were made among Douglas-fir forest, aspen (broad leaf deciduous) forest and wheatgrass (C-3) grassland for ecosystem-level water-use efficiency (WUE). WUE was defined as the ratio of photosynthetic CO2 assimilation rate and evapotranspiration (ET) rate. The ET data measured by eddy covariance were screened so that they overwhelmingly represented transpiration. The three sites used in this comparison spanned a range of vegetation (plant functional) types and environmental conditions within western Canada. When compared in the relative order Douglas-fir (located on Vancouver Island, BC), aspen (northern Saskatchewan), grassland (southern Alberta), the sites demonstrated a progressive decline in precipitation and a general increase in maximum air temperature and atmospheric saturation deficit (D-max) during the mid-summer. The average (+/- SD) WUE at the grassland site was 2.6 +/- 0.7 mmol mol(-1), which was much lower than the average values observed for the two other sites (aspen: 5.4 +/- 2.3, Douglas-fir: 8.1 +/- 2.4). The differences in WUE among sites were primarily because of variation in ET. The highest maximum ET rates were approximately 5, 3.2 and 2.7 mm day(-1) for the grassland, aspen and Douglas-fir sites, respectively. There was a strong negative correlation between WUE and D-max for all sites. We also made seasonal measurements of the carbon isotope ratio of ecosystem respired CO2 (delta(R)) in order to test for the expected correlation between shifts in environmental conditions and changes to the ecosystem-integrated ratio of leaf intercellular to ambient CO2 concentration (c(i)/c(a)). There was a consistent increase in delta(R) values in the grassland, aspen forest and Douglas-fir forest associated with a seasonal reduction in soil moisture. Comparisons were made between WUE measured using eddy covariance with that calculated based on D and delta(R) measurements. There was excellent agreement between WUE values calculated using the two techniques. Our delta(R) measurements indicated that c(i)/c(a) values were quite similar among the Douglas-fir, aspen and grassland sites, despite large variation in environmental conditions among sites. This implied that the shorter-lived grass species had relatively high c(i)/c(a) values for the D of their habitat. By contrast, the longer-lived Douglas-fir trees were more conservative in water-use with lower c(i)/c(a) values relative to their habitat D. This illustrates the interaction between biological and environmental characteristics influencing ecosystem-level WUE. The strong correlation we observed between the two independent measurements of WUE, indicates that the stable isotope composition of respired CO2 is a useful ecosystem-scale tool to help study constraints to photosynthesis and acclimation of ecosystems to environmental stress.  
  Address Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada, Email: larry.flanagan@uleth.ca  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000234974900013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 226  
Permanent link to this record
 

 
Author Dejean, A.; Delabie, J.H.C.; Cerdan, P.; Gibernau, M.; Corbara, B. url  openurl
  Title Are myrmecophytes always better protected against herbivores than other plants? Type Journal Article
  Year (down) 2006 Publication Biological Journal of the Linnean Society Abbreviated Journal Biol. J. Linn. Soc.  
  Volume 89 Issue 1 Pages 91-98  
  Keywords Ant-plant mutualism; Azteca; Maieta; Myrmecophytes; Plant protection; Tococa; ant; defoliation; field method; mutualism; myrmecophyte; plant-herbivore interaction; Azteca; Azteca bequaerti; Clidemia; Crematogaster laevis; Formicidae; Maieta; Maieta guianensis; Pheidole minutula; Tococa; Tococa guianensis  
  Abstract The present field study compared the degree of defoliation of three Guianian melastome, two myrmecophytes (i.e. plants sheltering ants in hollow structures) and Clidemia sp., a nonmyrmecophytic plant serving as a control. Maieta guianensis Aubl. hosted mostly Pheidole minutula Mayr whatever the area, whereas Tococa guianensis Aubl. hosted mostly Azteca bequaerti Wheeler along streams and Crematogaster laevis Mayr or Azteca sp. 1 in the understory where it never blossomed. Only Tococa, when sheltering A. bequaerti in what can be considered as a truly mutualistic relationship, showed significantly less defoliation than control plants. In the other associations, the difference was not significant, but P. minutula is mutualistic with Maieta because it furnishes some protection (exclusion experiments) plus nutrients (previous studies). When devoid of ants, Tococa showed significantly greater defoliation than control plants; therefore, it was deduced that Tococa probably lacks certain antidefoliator metabolites that control plants possess (both Tococa and control plants are protected by ground-nesting, plant-foraging ants, which is termed 'general myrmecological protection'). Consequently, plant-ants other than A. bequaerti probably also protect Tococa slightly, thus compensating for this deficiency and permitting it to live in the understory until treefall gaps provide the conditions necessary for seed production. © 2006 The Linnean Society of London.  
  Address Laboratoire de Psychologie Sociale de la Cognition (UMR CNRS 6024), Université Blaise Pascal, 34 avenue Carnot, 63037 Clermont-Ferrand Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00244066 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 9; Export Date: 22 October 2011; Source: Scopus; Coden: Bjlsb; doi: 10.1111/j.1095-8312.2006.00660.x; Language of Original Document: English; Correspondence Address: Dejean, A.; Laboratoire d'Evolution et Diversité Biologique (UMR CNRS 5174), Université Toulouse III, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse Cedex, France; email: dejean@cict.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 355  
Permanent link to this record
 

 
Author Roggy, J.C.; Nicolini, E.; Imbert, P.; Caraglio, Y.; Bosc, A.; Heuret, P. openurl 
  Title Links between tree structure and functional leaf traits in the tropical forest tree Dicorynia guianensis Amshoff (Caesalpiniaceae) Type Journal Article
  Year (down) 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 6 Pages 553-564  
  Keywords Dicorynia guianensis; leaf structure; functional leaf traits; plasticity; tree structure  
  Abstract This study looked at the interactive effects of tree architectural stage of development (ASD) and light availability on different plant traits (growth parameters, leaf morpho-anatomy and photosynthetic capacities) in the tropical species Dicorynia guianensis. A qualitative architectural analysis was used to categorize tree individuals sampled along a natural light gradient. The results show that some traits could have an ASD-dependence at the whole plant and leaf level without control of light. The changes observed relate to vigour thresholds the plant has to reach to shift from one ASD to another (i.e., the number of nodes and the internodes length per Growth Unit). Light conditions do not modify these thresholds but may modify the time they are crossed. Tree height was found strongly modulated by light conditions; hence, at a similar height, individuals may belong to different ASD. At the functional level, a decrease in N-m, and A(maxm) was observed with increasing light availability, while N-a increased and A(maxa) remained unaffected. An ASD effect was also observed on Amaxa and LMA but not on Amaxm. These results demonstrated a weak ability of photosynthetic plasticity in response to light conditions, and that variations of leaf photosynthetic variables according to ASD can be explained by modifications in leaf nitrogen and LMA. Questions on the reliability of a height-based sampling strategy for evaluating the phenotypic plasticity of trees in relation to light conditions are raised.  
  Address INRA, Ecol Forets Guyane, ENGREF, UMR CIRAD, F-97387 Kourou, Guyane Francais, France, Email: roggy.j@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000232084400009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 229  
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Blanc, L.; Picard, N.; Sist, P.; Dick, J.; Nasi, R.; Swaine, M.D.; Forni, E. openurl 
  Title Grouping species for predicting mixed tropical forest dynamics: looking for a strategy Type Journal Article
  Year (down) 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 8 Pages 785-796  
  Keywords cross-comparisons; functional groups; modelling strategy; species classifications  
  Abstract The high species diversity of mixed tropical forests hinders the development of forest dynamic models. A solution commonly adopted is to cluster species in groups. There are various methods for grouping species that can be linked to three strategies (i) the ecological subjective strategy, (ii) the ecological data-driven strategy, and (iii) the dynamic process strategy. In the first two strategies a species will be assigned to a single group while in the latter strategy, a specific grouping is defined for each process of population dynamics ( typically based on recruitment, growth, mortality). Little congruency or convergence is observed in the literature between any two classifications of species. This may be explained by the independence between the sets of tree characters used to build species groups, or by the intra-specific variability of these characters. We therefore recommend the dynamic process strategy as the most convenient strategy for building groups of species.  
  Address Cirad Foret, F-34398 Montpellier, France, Email: sylvie.gourlet-fleury@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000233972500001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 228  
Permanent link to this record
 

 
Author Scotti, I.; Burelli, A.; Cattonaro, F.; Chagne, D.; Fuller, J.; Hedley, P.E.; Jansson, G.; Lalanne, C.; Madur, D.; Neale, D.; Plomion, C.; Powell, W.; Troggio, M.; Morgante, M. openurl 
  Title Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies karst) Type Journal Article
  Year (down) 2005 Publication Tree Genetics & Genomes Abbreviated Journal Tree Genet. Genomes  
  Volume 1 Issue 3 Pages 93-102  
  Keywords Picea abies; conifers; linkage map; genome structure; molecular markers; autocorrelation  
  Abstract In order to analyze the large-scale structure of the genome of Norway spruce (Picea abies Karst.), a pseudo-testcross genetic linkage map was built using markers of six different types, belonging to the low (amplified fragment length polymorphisms, simple sequence repeats) or high (sequence-specific amplified polymorphisms, inter-retrotransposon amplified polymorphisms) copy-number fraction of the genome, and including expressed region-derived markers (expressed sequence tag polymorphisms). Twenty seven and 23 linkage groups of at least four markers were obtained for the female and the male parent maps, respectively. A subset of these linkage groups coalesced into 13 bi-parental linkage groups through markers shared between the two maps. This map was used to investigate the frequency of each marker type over chromosomes and the distribution of marker types relative to each other, using autocorrelation techniques. Our results show that, while the composition of chromosomes is homogeneous, low- and high-copy-number markers tend to occupy separate regions of the linkage groups, and that expressed sequences are preferentially associated with microsatellites and separated from retrotranspo sons. These results indicate that the spatial structure of Norway spruce chromosomes is not homogeneous.  
  Address INRA, UMR ECOFOG, Kourou 97387, French Guiana, Email: ivan.scotti@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher SPRINGER HEIDELBERG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-2942 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000244896200002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 167  
Permanent link to this record
 

 
Author Veron, V.; Caron, H.; Degen, B. openurl 
  Title Gene flow and mating system of the tropical tree Sextonia rubra Type Journal Article
  Year (down) 2005 Publication Silvae Genetica Abbreviated Journal Silvae Genet.  
  Volume 54 Issue 6 Pages 275-280  
  Keywords genetic diversity; gene flow; heterozygosity; microsatellites; mixed mating; tropical tree; twogener  
  Abstract In this paper we report a study of the mating system and gene flow of Sextonia rubra, a hermaphroditic, insect pollinated tropical tree species with a geographic distribution in the Guyana Plateau and the Amazon. Using five microsatellites we analysed 428 seeds of 27 open pollinated families at the experimental site “Paracou” in French Guiana. We observed, compared to other tropical tree species, a high level of genetic diversity. We estimated parameters of the mating system and gene flow by using the mixed mating model and the TwoGener approach. The estimated multilocus outcrossing rate, t(m), was 0.992 indicating nearly complete outcrossing. A significant level of biparental inbreeding and a:small proportion. of full-sibs were estimated for the 27 seed arrays. The differentiation of allelic frequencies among the pollen pools was (Phi(FT) = 0.061. We estimated mean pollen dispersal distances between 65 m and 89 m according to the dispersal models used. The joint estimation of pollen dispersal and density of reproductive trees gave an effective density estimate of 2.1-2.2 trees/ha.  
  Address INRA, UMR, ECOFOG, Kourou 9738, French Guiana, Email: b.degen@holz.uni-hamburg.de  
  Corporate Author Thesis  
  Publisher J D SAUERLANDERS VERLAG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0037-5349 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000235239400005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 182  
Permanent link to this record
 

 
Author Baraloto, C.; Forget, P.M.; Goldberg, D.E. openurl 
  Title Seed mass, seedling size and neotropical tree seedling establishment Type Journal Article
  Year (down) 2005 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 93 Issue 6 Pages 1156-1166  
  Keywords French Guiana; life-history trade-offs; microhabitat; path analysis; regeneration strategy; relative growth rate; seedling survival; shade tolerance  
  Abstract 1 We examined among- and within-species effects of seed mass for seedling establishment from seed to 5 years of age in a field experiment at Paracou, French Guiana. 2 Six seeds of each of eight species were weighed and planted into each of 120 plots (1 m(2)) throughout closed-canopy forest along 12 100-m transects in 1998. 3 We described the microhabitat of each planting site using principal components derived from measurements of light availability, soil moisture, carbon and nitrogen content, and soil phosphorus availability. Although both survival and relative growth rate (RGR) increased with increasing light availability, no other microhabitat variable significantly affected seedling performance. Nor did the magnitude of microhabitat effects on survival or RGR differ among species. 4 Larger-seeded species were more likely to survive from germination to 1 year as well as from 1 to 5 years of age. RGR for seedling height during the first year post-germination was not related to seed mass, but smaller-seeded species did grow slightly faster thereafter. Path analyses revealed that correlations between seed mass and performance were explained in part because larger seeds produced larger initial seedlings, which tended to survive better but grow more slowly. 5 We also analysed within-species effects of seed mass for the larger-seeded Eperua grandiflora and Vouacapoua americana (both Caesalpiniaceae). Larger seeds produced larger seedlings in both species, but larger seeds survived better only for Eperua. Larger seedlings grew more slowly in both species, but did not offset the early (Eperua) and later (Vouacapoua) positive direct effects of seed mass on RGR that may represent contrasting strategies for reserve deployment. 6 Our results demonstrate that seed size influences performance within and among species in part because of indirect effects of initial seedling size. However, we suggest that traits tightly correlated with seed mass at the species level, such as specific leaf area, leaf longevity and photosynthetic capacity, may also contribute to interspecific performance differences.  
  Address Museum Natl Hist Nat, Dept Ecol & Gest Biodivers, UMR 5176, CNRS, Brunoy, France, Email: baraloto.c@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0477 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000233287500012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 250  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Imbert, P.; Born, C.; Bonal, D.; Dreyer, E. openurl 
  Title Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance Type Journal Article
  Year (down) 2005 Publication Tree Physiology Abbreviated Journal Tree Physiol.  
  Volume 25 Issue 9 Pages 1127-1137  
  Keywords functional diversity; leaf carbon; leaf nitrogen; nitrogen-use efficiency; photosynthetic capacity; tropical rain forest  
  Abstract Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species.  
  Address CNRS Ecol Forets Guyane, INRA, ENGREF,CIRAD, Unite Mixte Rech, Kourou 97387, French Guiana, Email: roggy.j@cirad.fr  
  Corporate Author Thesis  
  Publisher HERON PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0829-318X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000231555200005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 230  
Permanent link to this record
 

 
Author Delaval, M.; Henry, M.; Charles-Dominique, P. openurl 
  Title Interspecific competition and niche partitioning: Example of a neotropical rainforest bat community Type Journal Article
  Year (down) 2005 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal Rev. Ecol.-Terre Vie  
  Volume 60 Issue 2 Pages 149-165  
  Keywords  
  Abstract To understand the organization of a bat community and the coexistence of sympatric species, it is essential to understand how species use and share common resources. First, we describe a bat community in a primary rainforest of French Guiana. The presence of particular roosting sites, such as caves, and the absence of disturbances are important local factors in structuring communities. In the course of this study, we focused on the three most common species of three vegetarian bat guilds (understorey frugivores, canopy frugivores and nectarivores). The local coexistence of these species is possible thanks to space, food and/or time partitioning. Space partitioning is consistent with the hypothesis that smaller bats with a more manoeuvrable flight tend to occupy more cluttered space less attractive to their competitors and have smaller home range. We observed a time partitioning that is likely to reduce competition among some frugivorous bat species by reducing direct interference during foraging. Besides an interest for the field community ecology, this study of a community living in a primary forest can be used as a reference for non disturbed habitat for conservation purposes.  
  Address Dept Ecol & Gestion Biodivers, UMR 5176, F-91800 Brunoy, France, Email: marguerite.delaval@wanadoo.fr  
  Corporate Author Thesis  
  Publisher SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0249-7395 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000230973300005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 231  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: