|   | 
Details
   web
Records
Author Shepard, W.D.; Clavier, S.; Cerdan, A.
Title A generic key to the known larval elmidae (Insecta: Coleoptera) of French Guiana Type Journal Article
Year 2020 Publication Papeis Avulsos de Zoologia Abbreviated Journal Pap. Avulsos Zool.
Volume (down) 60 Issue Special Pages e202060
Keywords Biodiversity; Identification; Immatures; Neotropical; Survey
Abstract An identification key is provided for 21 larval types of Elmidae (riffle beetles) known to occur in French Guiana. Not all elmid genera known to occur in French Guiana are known in the larval stage. Nor are all the known larval types assigned to known elmid genera. © 2020, Universidade de Sao Paulo. All rights reserved.
Address CNRS, UMR EcoFog (AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane), Kourou Cedex, France
Corporate Author Thesis
Publisher Universidade de Sao Paulo Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00311049 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 980
Permanent link to this record
 

 
Author Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A.
Title Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume (down) 52 Issue 6 Pages 1183-1193
Keywords canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana
Abstract Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation
Address UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 948
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A.
Title Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume (down) 52 Issue 4 Pages 608-615
Keywords branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae
Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation
Address UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 960
Permanent link to this record
 

 
Author Schimann, H.; Vleminckx, J.; Baraloto, C.; Engel, J.; Jaouen, G.; Louisanna, E.; Manzi, S.; Sagne, A.; Roy, M.
Title Tree communities and soil properties influence fungal community assembly in neotropical forests Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume (down) 52 Issue 3 Pages 444-456
Keywords communities; composition; diversity; habitat; lowland neotropical rain forest; macrofungi; soil properties; trees; ectomycorrhiza; fungus; heterogeneity; Neotropical Region; physicochemical property; rainforest; species inventory; species richness; tree; tropical forest; French Guiana; Agaricales; Aphyllophorales; Basidiomycota
Abstract The influence exerted by tree communities, topography, and soil chemistry on the assembly of macrofungal communities remains poorly understood, especially in highly diverse tropical forests. Here, we used a large dataset that combines inventories of macrofungal Basidiomycetes fruiting bodies, tree species composition, and measurements for 16 soil physicochemical parameters, collected in 34 plots located in four sites of lowland rain forests in French Guiana. Plots were established on three different topographical conditions: hilltop, slope, and seasonally flooded soils. We found hyperdiverse Basidiomycetes communities, mainly comprising members of Agaricales and Polyporales. Phosphorus, clay contents, and base saturation in soils strongly varied across plots and shaped the richness and composition of tree communities. The latter composition explained 23% of the variation in the composition of macrofungal communities, probably through high heterogeneity of the litter chemistry and selective effects of biotic interactions. The high local heterogeneity of habitats influenced the distribution of both macrofungi and trees, as a result of diversed local soil hydromorphic conditions associated with contrasting soil chemistry. This first regional study across habitats of French Guiana forests revealed new niches for macrofungi, such as ectomycorrhizal ones, and illustrates how macrofungi inventories are still paramount to can be to understand the processes at work in the tropics. Abstract in Spanish is available with online material. © 2020 The Association for Tropical Biology and Conservation
Address Laboratoire Évolution et Diversité Biologique, CNRS, UMR 5174 UPS CNRS ENFA IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 968
Permanent link to this record
 

 
Author Mahoui,Sihem ; Moulay, Mohamed Said ; Omrane, Abdennebi
Title Finite element approach to linear parabolic pointwise control problems of incomplete data Type Journal Article
Year 2020 Publication International Journal of Systems Science Abbreviated Journal
Volume (down) 51 Issue 14 Pages 2597-2609
Keywords Optimal control problem ; low-regret control ; pointwise control ; finite element method ; a priori error estimates
Abstract In this paper we give a priori error estimates for finite element approximations of linear parabolicproblems with pointwise control and incomplete data. We discretise the optimal control problemby using piecewise linear and continuous finite elements for the space discretisation of the state,and we use the backward Euler scheme for time discretisation. We prove a priori error estimates forthe state, the adjoint-state as well as for the low-regret pointwise optimal control.
Address
Corporate Author Thesis
Publisher TAYLOR & FRANCIS LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 935
Permanent link to this record
 

 
Author Levionnois, S.; Coste, S.; Nicolini, E.; Stahl, C.; Morel, H.; Heuret, P.
Title Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae) Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume (down) 40 Issue 2 Pages 245-258
Keywords allometry; leaf size; petiole anatomy; scaling; theoretical hydraulic conductivity; vessel widening; xylem
Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permission@oup.com.
Address UMR AMAP, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, 34398, France
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 921
Permanent link to this record
 

 
Author Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J.
Title Traits controlling shade tolerance in tropical montane trees Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume (down) 40 Issue 2 Pages 183-197
Keywords biomass allocation; leaf temperature; plant traits; Rwanda; shade intolerance; shade tolerance; tropical montane forest; article; biomass allocation; breathing; canopy; carbon balance; compensation; photosynthesis; plant leaf; plant stem; rain forest; Rwanda; shade tolerance; species difference; sweating
Abstract Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation. © The Author(s) 2019. Published by Oxford University Press.
Address Rwanda Agriculture and Animal Resources Development, PO Box 5016Kigali, Rwanda
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 922
Permanent link to this record
 

 
Author Dejean, A.; Petitclerc, F.; Azémar, F.
Title Seasonality influences ant-mediated nutrient acquisition (myrmecotrophy) by a Neotropical myrmecophyte Type Journal Article
Year 2020 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.
Volume (down) 34 Issue 4 Pages 645-657
Keywords Ant-plant relationships; Mutualism; Myrmecophyte; Myrmecotrophy; Phenology; Stable isotopes; ant; herb; host plant; life cycle; myrmecochory; myrmecophyte; Neotropical Region; phenology; seasonality; stable isotope; understory; Gentianaceae; Tachia; Tachia guianensis
Abstract Tachia guianensis (Gentianaceae), a Neotropical understory myrmecophyte, shelters ant colonies in its hollow trunks and branches (domatia). In turn, it is protected from defoliators and obtains nutrients from ant-produced wastes (myrmecotrophy). Aiming to verify if seasonality influences nitrogen assimilation via ant wastes using the stable isotope nitrogen-15, we first studied Tachia’s phenology and its seasonal leaf production, and then the life cycle of its two more frequent guest ant species. We found that leaf production was much higher during the rainy than the dry season. Mature guest ant colonies produced sexuals regardless of the season and the net weight of the waste piles inside the domatia did not vary between seasons, so that the availability of nutrients to their host plant is steady year-long. By providing the two most frequent mutualistic guest ant species with food enriched with nitrogen-15, we showed that Tachia individuals assimilate more nitrogen from ant wastes during the rainy season, when the plant is physiologically active, compared to the dry season. Thus, one can deduce that the increase in nitrogen assimilation during the rainy season is determined by the increase in Tachia’s physiological activity during that season. Information gathered through a bibliographic compilation confirms that none of the 15 ant species known to be associated with myrmecophytes for which the life cycle was studied is characterized by seasonal reproduction (which would result in fluctuating waste production). The same is true for 49.7% of 167 tropical ant species (seasonal production for the remaining species). We concluded that, in contrast to the non-seasonal ant colony reproductive cycle, Tachia’s phenology determines the myrmecotrophic assimilation rate. © 2020, Springer Nature Switzerland AG.
Address CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 02697653 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 956
Permanent link to this record
 

 
Author Vleminckx, J.; Bauman, D.; Demanet, M.; Hardy, O.J.; Doucet, J.-L.; Drouet, T.
Title Past human disturbances and soil fertility both influence the distribution of light-demanding tree species in a Central African tropical forest Type Journal Article
Year 2020 Publication Journal of Vegetation Science Abbreviated Journal J. Veg. Sci.
Volume (down) 31 Issue 3 Pages 440-453
Keywords light-demanding species; moist tropical forests; past human disturbances; shade-bearer species; soil charcoal abundance; soil properties; tree community assemblages; wood-specific gravity; anthropogenic effect; forest canopy; forest ecosystem; shifting cultivation; soil fertility; soil property; tree; tropical forest; Cameroon
Abstract Questions: In vast areas of Central African forests, the upper canopy is presently dominated by light-demanding tree species. Here, we confront three hypotheses to explain this dominance: (a) these species have expanded their distribution because of widespread past slash-and-burn activities, as suggested by important charcoal amounts recorded in the soils of the region; (b) their abundance is rather explained by soil properties, as this guild establishes preferentially on favourable physico-chemical conditions for rapid growth; (c) soil properties have been substantially influenced by past human disturbances and those two effects cannot be disentangled. Location: Pallisco-CIFM logging concession, southeastern Cameroon (300,000 ha). Methods: We quantified soil charcoal abundance and measured ten soil variables at the basis of 60 target trees that belonged to a list of three long-living pioneer light-demanding (LLP) and four shade-bearer (SB) species. We identified all stems with a diameter at breast height (DBH) ≥ 20 cm within a distance of 15 m around each target tree. Species were characterised by their wood-specific gravity (WSG), which reflected their light requirement. Multiple regression models were used to quantify and test the relative effects of charcoal abundance and soil variables on the mean WSG of the 60 tree communities, as well as the abundance of three guilds: LLP, SB, and non-pioneer light demanders (NPLD). Results: The mean WSG was the only response variable significantly explained by soil variables and charcoal abundance combined. It was significantly negatively associated with soil calcium and Mg content and with charcoal abundance, with soil and charcoal influencing the mean WSG independently. Conclusion: Our study provides evidence that past human disturbances and soil fertility have independently promoted the establishment of light-demanding species in western Central African forests, thereby shedding light on tree community assembly rules in these ecosystems which remain considerably understudied compared to the tropical forests of other continents. © 2020 International Association for Vegetation Science
Address Forest is life, TERRA Teaching and Research Centre, Université de Liège – Gembloux Agro-Bio Tech, Gembloux, Belgium
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 11009233 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 970
Permanent link to this record
 

 
Author Chave, J.; Piponiot, C.; Maréchaux, I.; de Foresta, H.; Larpin, D.; Fischer, F.J.; Derroire, G.; Vincent, G.; Hérault, B.
Title Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics Type Journal Article
Year 2020 Publication Ecological Applications Abbreviated Journal Ecol. Appl.
Volume (down) 30 Issue 1 Pages e02004
Keywords biomass; carbon; forest; French Guiana; regeneration; secondary forests; tropics; accumulation rate; Bayesian analysis; biomass; carbon sequestration; chronosequence; fertility; old-growth forest; pioneer species; regeneration; secondary forest; Costa Rica; French Guiana; Guyana Shield; Goupia glabra; Laetia procera; Xylopia
Abstract Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha−1·yr−1) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.
Address INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 19395582 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 914
Permanent link to this record