|   | 
Details
   web
Records
Author Leroy, C.; Gril, E.; Si Ouali, L.; Coste, S.; Gérard, B.; Maillard, P.; Mercier, H.; Stahl, C.
Title Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads Type Journal Article
Year 2019 Publication Environmental and Experimental Botany Abbreviated Journal Environ. Exp. Bot.
Volume 163 Issue Pages 112-123
Keywords 15 N labelling; Carbon metabolism; Nutrient uptake; Plant performance; Tank bromeliad; Water status; Aechmea
Abstract The water and nutrient uptake mechanisms used by vascular epiphytes have been the subject of a few studies. While leaf absorbing trichomes (LATs) are the main organ involved in resource uptake by bromeliads, little attention has been paid to the absorbing role of epiphytic bromeliad roots. This study investigates the water and nutrient uptake capacity of LATs vs. roots in two epiphytic tank bromeliads Aechmea aquilega and Lutheria splendens. The tank and/or the roots of bromeliads were watered, or not watered at all, in different treatments. We show that LATs and roots have different functions in resource uptake in the two species, which we mainly attributed to dissimilarities in carbon acquisition and growth traits (e.g., photosynthesis, relative growth rate, non-structural carbohydrates, malate), to water relation traits (e.g., water and osmotic potentials, relative water content, hydrenchyma thickness) and nutrient uptake (e.g., 15 N-labelling). While the roots of A. aquilega did contribute to water and nutrient uptake, the roots of L. splendens were less important than the role played by the LATs in resource uptake. We also provide evidenced for a synergistic effect of combined watering of tank and root in the Bromelioideae species. These results call for a more complex interpretation of LATs vs. roots in resource uptake in bromeliads. © 2019 Elsevier B.V.
Address INRA, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00988472 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 871
Permanent link to this record
 

 
Author Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.; de-Miguel, S.; Zhou, M.; Picard, N.; Herault, B.; Zhao, X.; Zhang, C.; Routh, D.; Peay, K.G.; Abegg, M.; Adou Yao, C.Y.; Alberti, G.; Almeyda Zambrano, A.; Alvarez-Davila, E.; Alvarez-Loayza, P.; Alves, L.F.; Ammer, C.; Antón-Fernández, C.; Araujo-Murakami, A.; Arroyo, L.; Avitabile, V.; Aymard, G.; Baker, T.; Bałazy, R.; Banki, O.; Barroso, J.; Bastian, M.; Bastin, J.-F.; Birigazzi, L.; Birnbaum, P.; Bitariho, R.; Boeckx, P.; Bongers, F.; Bouriaud, O.; Brancalion, P.H.S.; Brandl, S.; Brearley, F.Q.; Brienen, R.; Broadbent, E.; Bruelheide, H.; Bussotti, F.; Cazzolla Gatti, R.; Cesar, R.; Cesljar, G.; Chazdon, R.; Chen, H.Y.H.; Chisholm, C.; Cienciala, E.; Clark, C.J.; Clark, D.; Colletta, G.; Condit, R.; Coomes, D.; Cornejo Valverde, F.; Corral-Rivas, J.J.; Crim, P.; Cumming, J.; Dayanandan, S.; de Gasper, A.L.; Decuyper, M.; Derroire, G.; DeVries, B.; Djordjevic, I.; Iêda, A.; Dourdain, A.; Obiang, N.L.E.; Enquist, B.; Eyre, T.; Fandohan, A.B.; Fayle, T.M.; Feldpausch, T.R.; Finér, L.; Fischer, M.; Fletcher, C.; Fridman, J.; Frizzera, L.; Gamarra, J.G.P.; Gianelle, D.; Glick, H.B.; Harris, D.; Hector, A.; Hemp, A.; Hengeveld, G.; Herbohn, J.; Herold, M.; Hillers, A.; Honorio Coronado, E.N.; Huber, M.; Hui, C.; Cho, H.; Ibanez, T.; Jung, I.; Imai, N.; Jagodzinski, A.M.; Jaroszewicz, B.; Johannsen, V.; Joly, C.A.; Jucker, T.; Karminov, V.; Kartawinata, K.; Kearsley, E.; Kenfack, D.; Kennard, D.; Kepfer-Rojas, S.; Keppel, G.; Khan, M.L.; Killeen, T.; Kim, H.S.; Kitayama, K.; Köhl, M.; Korjus, H.; Kraxner, F.; Laarmann, D.; Lang, M.; Lewis, S.; Lu, H.; Lukina, N.; Maitner, B.; Malhi, Y.; Marcon, E.; Marimon, B.S.; Marimon-Junior, B.H.; Marshall, A.R.; Martin, E.; Martynenko, O.; Meave, J.A.; Melo-Cruz, O.; Mendoza, C.; Merow, C.; Monteagudo Mendoza, A.; Moreno, V.; Mukul, S.A.; Mundhenk, P.; Nava-Miranda, M.G.; Neill, D.; Neldner, V.; Nevenic, R.; Ngugi, M.; Niklaus, P.; Oleksyn, J.; Ontikov, P.; Ortiz-Malavasi, E.; Pan, Y.; Paquette, A.; Parada-Gutierrez, A.; Parfenova, E.; Park, M.; Parren, M.; Parthasarathy, N.; Peri, P.L.; Pfautsch, S.; Phillips, O.; Piedade, M.T.; Piotto, D.; Pitman, N.C.A.; Polo, I.; Poorter, L.; Poulsen, A.D.; Poulsen, J.R.; Pretzsch, H.; Ramirez Arevalo, F.; Restrepo-Correa, Z.; Rodeghiero, M.; Rolim, S.; Roopsind, A.; Rovero, F.; Rutishauser, E.; Saikia, P.; Saner, P.; Schall, P.; Schelhaas, M.-J.; Schepaschenko, D.; Scherer-Lorenzen, M.; Schmid, B.; Schöngart, J.; Searle, E.; Seben, V.; Serra-Diaz, J.M.; Salas-Eljatib, C.; Sheil, D.; Shvidenko, A.; Silva-Espejo, J.; Silveira, M.; Singh, J.; Sist, P.; Slik, F.; Sonké, B.; Souza, A.F.; Stereńczak, K.; Svenning, J.-C.; Svoboda, M.; Targhetta, N.; Tchebakova, N.; Steege, H.; Thomas, R.; Tikhonova, E.; Umunay, P.; Usoltsev, V.; Valladares, F.; van der Plas, F.; Van Do, T.; Vasquez Martinez, R.; Verbeeck, H.; Viana, H.; Vieira, S.; von Gadow, K.; Wang, H.-F.; Watson, J.; Westerlund, B.; Wiser, S.; Wittmann, F.; Wortel, V.; Zagt, R.; Zawila-Niedzwiecki, T.; Zhu, Z.-X.; Zo-Bi, I.C.; GFBI consortium
Title Climatic controls of decomposition drive the global biogeography of forest-tree symbioses Type Journal Article
Year 2019 Publication Nature Abbreviated Journal Nature
Volume 569 Issue 7756 Pages 404-408
Keywords Fungi
Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
Address Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00280836 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 872
Permanent link to this record
 

 
Author Sebbenn, A.M.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.; Tysklind, N.; Troispoux, V.; Delcamp, A.; Degen, B.
Title Nuclear and plastidial SNP and INDEL markers for genetic tracking studies of Jacaranda copaia Type Journal Article
Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.
Volume 11 Issue 3 Pages 341-343
Keywords DNA fingerprints; Geographical origin; Jacaranda copaia; MassARRAY; MiSeq; RADSeq; Tropical timber
Abstract Nuclear and plastidial single nucleotide polymorphism (SNP) and INDEL markers were developed using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing for population genetics and timber tracking purposes in the Neotropical timber species Jacaranda copaia. We used 407 nuclear SNPs, 29 chloroplast, and 31 mitochondrial loci to genotype 92 individuals from Brazil, Bolivia, French Guiana, and Peru. Based on high amplification rates and genetic differentiation among populations, 113 nuclear SNPs, 11 chloroplast, and 4 mitochondrial loci were selected, and their use validated for genetic tracking of timber origin.
Address BIOGECO, INRA, Univ. Bordeaux, Cestas, 33610, France
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 18777252 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 907
Permanent link to this record
 

 
Author Tysklind, N.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.R.; Sebbenn, A.M.; Caron, H.; Troispoux, V.; Guichoux, E.; Degen, B.
Title Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species Type Journal Article
Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.
Volume 11 Issue 3 Pages 337-339
Keywords Carapa guianensis; Carapa surinamensis; DNA-fingerprints; Geographical origin; MassARRAY; MiSeq; RADSeq; Tropical timber
Abstract Low coverage MiSeq genome sequencing and restriction associated DNA sequencing (RADseq) were used to identify nuclear and plastid SNP and INDEL genetic markers in Carapa guianensis. 261 genetic markers including 237 nuclear SNPs, 22 plastid SNPs, and 2 plastid INDELs are described based on 96 genotyped individuals from French Guiana, Brazil, Peru, and Bolivia. The best 117 SNPs for identifying population structure and performing individual assignment are assembled into four multiplexes for MassARRAY genotyping.
Address BIOGECO, INRA, University Bordeaux, Cestas, 33610, France
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 18777252 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 909
Permanent link to this record
 

 
Author Chaves, C.L.; Blanc-Jolivet, C.; Sebbenn, A.M.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; Garcia-Davila, C.; Tysklind, N.; Troispoux, V.; Massot, M.; Degen, B.
Title Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees Type Journal Article
Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.
Volume 11 Issue 3 Pages 329-331
Keywords DNA fingerprints; Geographical origin; MiSeq; RADSeq
Abstract We developed nuclear and chloroplastic single nucleotide polymorphism (SNP) and INDEL (insertion/deletion) markers using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing to set up a genetic tracking method of the geographical origin of Hymenaea sp. From two initial sets of 358 and 32 loci used to genotype at least 94 individuals, a final set of 75 nSNPs, 50 cpSNPs and 6 INDELs identifying significant population structure was developed. © 2018, Springer Nature B.V.
Address Departamento de Fitotecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 18777252 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 908
Permanent link to this record
 

 
Author Rodrigues, A.M.S.; Eparvier, V.; Odonne, G.; Amusant, N.; Stien, D.; Houël, E.
Title The antifungal potential of (Z)-ligustilide and the protective effect of eugenol demonstrated by a chemometric approach Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 9 Issue Pages 8729
Keywords
Abstract Mankind is on the verge of a postantibiotic era. New concepts are needed in our battle to attenuate infectious diseases around the world and broad spectrum plant-inspired synergistic pharmaceutical preparations should find their place in the global fight against pathogenic microorganisms. To progress towards the discovery of potent antifungal agents against human pathologies, we embarked upon developing chemometric approach coupled with statistical design to unravel the origin of the anticandidal potential of a set of 66 essential oils (EOs). EOs were analyzed by GC-MS and tested against Candida albicans and C. parapsilosis (Minimal Inhibitory Concentration, MIC). An Orthogonal Partial Least Square (OPLS) analysis allowed us to identify six molecules presumably responsible for the anticandidal activity of the oils: (Z)-ligustilide, eugenol, eugenyl acetate, citral, thymol, and β-citronellol. These compounds were combined following a full factorial experimental design approach in order to optimize the anticandidal activity and selectivity index (SI = IC50(MRC5 cells)/MIC) through reconstituted mixtures. (Z)-Ligustilide and citral were the most active compounds, while (Z)-ligustilide and eugenol were the two main factors that most contributed to the increase of the SI. These two terpenes can, therefore, be used to construct bioinspired synergistic anticandidal mixtures. © 2019, The Author(s).
Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Cayenne, 97300, France
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20452322 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 876
Permanent link to this record
 

 
Author Aubry-Kientz, M.; Rossi, V.; Cornu, G.; Wagner, F.; Herault, B.
Title Temperature rising would slow down tropical forest dynamic in the Guiana Shield Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 9 Issue Pages 10235
Keywords article; biomass; climate change; controlled study; diagnostic test accuracy study; driver; human; joint; mortality rate; precipitation; prediction; sensitivity analysis; simulation; statistics; tree growth; tropical rain forest; water stress
Abstract Increasing evidence shows that the functioning of the tropical forest biome is intimately related to the climate variability with some variables such as annual precipitation, temperature or seasonal water stress identified as key drivers of ecosystem dynamics. How tropical tree communities will respond to the future climate change is hard to predict primarily because several demographic processes act together to shape the forest ecosystem general behavior. To overcome this limitation, we used a joint individual-based model to simulate, over the next century, a tropical forest community experiencing the climate change expected in the Guiana Shield. The model is climate dependent: temperature, precipitation and water stress are used as predictors of the joint growth and mortality rates. We ran simulations for the next century using predictions of the IPCC 5AR, building three different climate scenarios (optimistic RCP2.6, intermediate, pessimistic RCP8.5) and a control (current climate). The basal area, above-ground fresh biomass, quadratic diameter, tree growth and mortality rates were then computed as summary statistics to characterize the resulting forest ecosystem. Whatever the scenario, all ecosystem process and structure variables exhibited decreasing values as compared to the control. A sensitivity analysis identified the temperature as the strongest climate driver of this behavior, highlighting a possible temperature-driven drop of 40% in average forest growth. This conclusion is alarming, as temperature rises have been consensually predicted by all climate scenarios of the IPCC 5AR. Our study highlights the potential slow-down danger that tropical forests will face in the Guiana Shield during the next century. © 2019, The Author(s).
Address Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Cote d'Ivoire
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20452322 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 878
Permanent link to this record
 

 
Author Peguero, G.; Sardans, J.; Asensio, D.; Fernández-Martínez, M.; Gargallo-Garriga, A.; Grau, O.; Llusià, J.; Margalef, O.; Márquez, L.; Ogaya, R.; Urbina, I.; Courtois, E.A.; Stahl, C.; Van Langenhove, L.; Verryckt, L.T.; Richter, A.; Janssens, I.A.; Peñuelas, J.
Title Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests Type Journal Article
Year 2019 Publication Proceedings. Biological sciences Abbreviated Journal Proc. Biol. Sci.
Volume 286 Issue 1910 Pages 20191300
Keywords biogeochemistry; extracellular enzyme activity; litter decomposition; nutrients; soil fauna
Abstract Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.
Address Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1090, Austria
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14712954 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 884
Permanent link to this record
 

 
Author Marcon, E.
Title Entropy as a common measure of biodiversity and the spatial structure of economic activity Type Journal Article
Year 2019 Publication Revue Economique Abbreviated Journal Rev. Econ.
Volume 70 Issue 3 Pages 305-326
Keywords Diversity; Economic geography; Spatial concentration; Specialization
Abstract Measures of spatial concentration and specialization in economics are similar to those of biodiversity and ubiquity of species in ecology. Entropy is the fundamental tool that originated in statistical physics and information theory. The definition of number equivalents or effective numbers, that is the number of types in an ideal, simplified distribution, is introduced along with the partitioning of the joint diversity of a bi-dimensional distribution into absolute and relative concentration or specialization and replication. The whole framework is theoretically robust and allows measuring the spatial structure of a discrete space.
Address AgroParisTech, UMR Écologie des forêts de Guyane, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Campus Agronomique, BP 701, Kourou, 97310, French Guiana
Corporate Author Thesis
Publisher Presses de Sciences Po Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00352764 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 912
Permanent link to this record
 

 
Author Odonne, G.; van den Bel, M.; Burst, M.; Brunaux, O.; Bruno, M.; Dambrine, E.; Davy, D.; Desprez, M.; Engel, J.; Ferry, B.; Freycon, V.; Grenand, P.; Jérémie, S.; Mestre, M.; Molino, J.-F.; Petronelli, P.; Sabatier, D.; Hérault, B.
Title Long-term influence of early human occupations on current forests of the Guiana Shield Type Journal Article
Year 2019 Publication Ecology Abbreviated Journal Ecology
Volume 100 Issue 10 Pages e02806
Keywords Amazonian forest; archaeology; ethnobotany; Guiana Shield; historical ecology; pre-Columbian settlements; ring-ditched hills; alluvial plain; anthropogenic effect; archaeology; basal area; database; ethnobotany; forest ecosystem; historical ecology; occupation; paleoecology; species diversity; Amazonia; French Guiana; Guyana Shield; Annonaceae; Arecaceae; Burseraceae; Lauraceae; Lecythidaceae; Brazil; forest; French Guiana; human; occupation; tree; Brazil; Forests; French Guiana; Humans; Occupations; Trees
Abstract To decipher the long-term influences of pre-Columbian land occupations on contemporary forest structure, diversity, and functioning in Amazonia, most of the previous research focused on the alluvial plains of the major rivers of the Amazon basin. Terra firme, that is, nonflooded forests, particularly from the Guiana Shield, are yet to be explored. In this study, we aim to give new insights into the subtle traces of pre-Columbian influences on present-day forests given the archaeological context of terra firme forests of the Guiana Shield. Following archaeological prospects on 13 sites in French Guiana, we carried out forest inventories inside and outside archaeological sites and assessed the potential pre-Columbian use of the sampled tree species using an original ethnobotanical database of the Guiana Shield region. Aboveground biomass (320 and 380 T/ha, respectively), basal area (25–30 and 30–35 m2/ha, respectively), and tree density (550 and 700 stem/ha, respectively) were all significantly lower on anthropized plots (As) than on nonanthropized plots (NAs). Ancient human presence shaped the species composition of the sampled forests with Arecaceae, Burseraceae, and Lauraceae significantly more frequent in As and Annonaceae and Lecythidaceae more frequent in NAs. Although alpha diversity was not different between As and NAs, the presence of pre-Columbian sites enhances significantly the forest beta diversity at the landscape level. Finally, trees with edible fruits are positively associated with pre-Columbian sites, whereas trees used for construction or for their bark are negatively associated with pre-Columbian sites. Half a millennium after their abandonment, former occupied places from the inner Guiana Shield still bear noticeable differences with nonanthropized places. Considering the lack of data concerning archaeology of terra firme Amazonian forests, our results suggest that pre-Columbian influences on the structure (lower current biomass), diversity (higher beta diversity), and composition (linked to the past human tree uses) of current Amazonian forests might be more important than previously thought. © 2019 by the Ecological Society of America
Address Institut National Polytechnique Félix Houphouet-Boigny (INP-HB), Yamoussoukro, Ivory Coast, Cote d'Ivoire
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00129658 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 919
Permanent link to this record