toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dejean, A.; Fisher, B.L.; Corbara, B.; Rarevohitra, R.; Randrianaivo, R.; Rajemison, B.; Leponce, M. pdf  openurl
  Title (up) Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species Type Journal Article
  Year 2010 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 5 Issue 2 Pages e9319  
  Keywords  
  Abstract We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species-a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal ants normally able to limit its progression.  
  Address [Dejean, Alain] CNRS, Unite Mixte Rech 8172, Kourou, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher PUBLIC LIBRARY SCIENCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274923700021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 81  
Permanent link to this record
 

 
Author Guitet, S.; Herault, B.; Molto, Q.; Brunaux, O.; Couteron, P. pdf  url
openurl 
  Title (up) Spatial structure of above-ground biomass limits accuracy of carbon mapping in rainforest but large scale forest inventories can help to overcome Type Journal Article
  Year 2015 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 10 Issue 9 Pages e0138456  
  Keywords  
  Abstract Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions.We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions.We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. Copyright: © 2015 Guitet et al.  
  Address Institut de Recherche Pour le Développement (IRD), UMR Amap, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 November 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 639  
Permanent link to this record
 

 
Author Fromin, N.; Saby, N.P.A.; Lensi, R.; Brunet, D.; Porte, B.; Domenach, A.-M.; Roggy, J.-C. url  doi
openurl 
  Title (up) Spatial variability of soil microbial functioning in a tropical rainforest of French Guiana using nested sampling Type Journal Article
  Year 2013 Publication Geoderma Abbreviated Journal  
  Volume 197-198 Issue Pages 98-107  
  Keywords Denitrification; Respiration; Scale dependent process; Soil microbial processes; Soil organic matter; Tree influence potential  
  Abstract Understanding the pattern in spatial distribution of soil microbial processes is critical to understand the environmental factors that regulate them as well as to scale up these processes to ecosystem. Soil samples from a 1. ha tropical rainforest plot (Paracou, French Guiana) were analyzed according a nested sampling approach using different separation distances ranging from 0.4 to 40. m. The variability of substrate induced respiration (SIR) and of denitrification enzyme activity (DEA) was characterized in relation to various soil properties (total C and N contents, NIRS related index of soil organic matter quality, SOMQ, and index of tree influence potential, IP). The variability of SIR and DEA was higher than that of environmental properties. The patterns of accumulated variance as a function of distance varied among the soil properties. The variability of SIR and DEA mainly occurred at small (1. m) scale (and at the 10-40. m-scales for SIR), probably reflecting the quality of litter input that results of the influence of local assemblage of different tree species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Coefficients of codispersion showed that neither SOMQ nor IP did correlate with SIR and DEA, and confirmed that total C and N contents explained microbial properties in a scale dependent and complex manner. Such spatial dependency underlines the importance of soil heterogeneity in this tropical forest with implications for sampling strategies when studying the microbial processes and their response to disturbances. © 2012 Elsevier B.V.  
  Address UMR EcoFoG, BP 709, 97387 Kourou, GUF, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 February 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 466  
Permanent link to this record
 

 
Author Fromin, N.; Porte, B.; Lensi, R.; Hamelin, J.; Domenach, A.-M.; Buatois, B.; Roggy, J.-C. url  openurl
  Title (up) Spatial variability of the functional stability of microbial respiration process: A microcosm study using tropical forest soil Type Journal Article
  Year 2012 Publication Journal of Soils and Sediments Abbreviated Journal J. Soils Sed.  
  Volume 12 Issue 7 Pages 1030-1039  
  Keywords Disturbance; Diversity-stability relationship; Microbial diversity; Substrate-induced respiration  
  Abstract Purpose: Understanding the ability of ecosystem processes to resist to and to recover from disturbances is critical to sustainable land use. However, the spatial variability of the stability has rarely been addressed. Here, we investigated the functional stability of a soil microbial process for 24 soils collected from adjacent locations from a 0. 3 ha tropical rainforest plot in Paracou, French Guiana. Materials and methods: The 24 locations were characterized regarding soil chemical and biological (microbial diversity) parameters and forest structure. The corresponding soils were submitted to an experimental transient heat disturbance during a microcosm experiment. The response of the respiration process was followed using substrate-induced respiration (SIR). Results and discussion: The response of soil SIR to heat disturbance varied widely between samples. The variability of the SIR response increased just after the disturbance, and a global rather homogeneous decrease in SIR rates was observed 15 and 30 days after. The stability of SIR in response to heat disturbance could not be related to either the genetic or the metabolic diversity of the microbial community. The initial level of SIR before the disturbance was the soil variable that best correlated with the impact of the disturbance: the soil locations with the highest initial SIR rates were the most affected 15 and 30 days after the heat disturbance. Conclusions: Such a heterogeneous response suggests that the response of soil processes to a disturbance will be difficult to assess from only local-scale analyses and highlights the need for spatial explicitness in understanding biogeochemical processes. © 2012 Springer-Verlag.  
  Address UMR EcoFoG, BP 709, 97387 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14390108 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2012; Source: Scopus; doi: 10.1007/s11368-012-0528-7; Language of Original Document: English; Correspondence Address: Fromin, N.; CEFE, CNRS UMR 5175, 1919 Route de Mende, 34293 Montpellier cedex 5, France; email: nathalie.fromin@cefe.cnrs.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 415  
Permanent link to this record
 

 
Author Courtois, E.A.; Stahl, C.; Van den Berge, J.; Bréchet, L.; Van Langenhove, L.; Richter, A.; Urbina, I.; Soong, J.L.; Peñuelas, J.; Janssens, I.A. url  doi
openurl 
  Title (up) Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield Type Journal Article
  Year 2018 Publication Ecosystems Abbreviated Journal  
  Volume 21 Issue 7 Pages 1445-1458  
  Keywords  
  Abstract The spatial variation of soil greenhouse gas fluxes (GHG; carbon dioxide—CO2, methane—CH4 and nitrous oxide—N2O) remains poorly understood in highly complex ecosystems such as tropical forests. We used 240 individual flux measurements of these three GHGs from different soil types, at three topographical positions and in two extreme hydric conditions in the tropical forests of the Guiana Shield (French Guiana, South America) to (1) test the effect of topographical positions on GHG fluxes and (2) identify the soil characteristics driving flux variation in these nutrient-poor tropical soils. Surprisingly, none of the three GHG flux rates differed with topographical position. CO2 effluxes covaried with soil pH, soil water content (SWC), available nitrogen and total phosphorus. The CH4 fluxes were best explained by variation in SWC, with soils acting as a sink under drier conditions and as a source under wetter conditions. Unexpectedly, our study areas were generally sinks for N2O and N2O fluxes were partly explained by total phosphorus and available nitrogen concentrations. This first study describing the spatial variation of soil fluxes of the three main GHGs measured simultaneously in forests of the Guiana Shield lays the foundation for specific studies of the processes underlying the observed patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-0629 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Courtois2018 Serial 847  
Permanent link to this record
 

 
Author Epron, D.; Bosc, A.; Bonal, D.; Freycon, V. openurl 
  Title (up) Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana Type Journal Article
  Year 2006 Publication Journal of Tropical Ecology Abbreviated Journal J. Trop. Ecol.  
  Volume 22 Issue Pages 565-574  
  Keywords acrisol; carbon balance; carbon flux; gleysol; root biomass  
  Abstract The objective of this study was to analyse the factors explaining spatial variation in soil respiration over topographic transects in a tropical rain forest of French Guiana. The soil of 30 plots along six transects was characterized. The appearance of the 'dry to the touch' character at a depth of less than 1.2 m was used to discriminate soils exhibiting vertical drainage from soils exhibiting superficial lateral drainage and along with colour and texture, to define five classes from well-drained to strongly hydromorphic soils. Spatial variation in soil respiration was closely related to topographic position and soil type. Increasing soil water content and bulk density and decreasing root biomass and soil carbon content explained most of the decrease in soil respiration from the plateaux (vertically drained hypoferralic acrisol) to the bottomlands (haplic gleysol). These results will help to stratify further field experiments and to identify the underlying determinants of spatial variation in soil respiration to develop mechanistic models of soil respiration.  
  Address Univ Nancy 1, UMR 1137, INRA, UHP Ecol & Ecophysiol Forestieres,Fac Sci, F-54506 Vandoeuvre Les Nancy, France, Email: Daniel.Epron@scbiol.uhp-nancy.fr  
  Corporate Author Thesis  
  Publisher CAMBRIDGE UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000239975200008 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 179  
Permanent link to this record
 

 
Author Hein, P.R.G.; Chaix, G.; Clair, B.; Brancheriau, L.; Gril, J. doi  openurl
  Title (up) Spatial variation of wood density, stiffness and microfibril angle along Eucalyptus trunks grown under contrasting growth conditions Type Journal Article
  Year 2016 Publication Trees – Structure and Function Abbreviated Journal  
  Volume 30 Issue 3 Pages 871-882  
  Keywords  
  Abstract Sloped terrains tend to produce trees with higher radial variation in wood density while at high wind speeds, the wood tends to present higher stiffness and lower MFA in Eucalyptus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2285 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Hein2016 Serial 720  
Permanent link to this record
 

 
Author Gomes, V.H.F.; IJff, S.D.; Raes, N.; Amaral, I.L.; Salomão, R.P.; de Souza Coelho, L.; de Almeida Matos, F.D.; Castilho, C.V.; de Andrade Lima Filho, D.; López, D.C.; Guevara, J.E.; Magnusson, W.E.; Phillips, O.L.; Wittmann, F.; de Jesus Veiga Carim, M.; Martins, M.P.; Irume, M.V.; Sabatier, D.; Molino, J.-F.; Bánki, O.S.; da Silva Guimarães, J.R.; Pitman, N.C.A.; Piedade, M.T.F.; Mendoza, A.M.; Luize, B.G.; Venticinque, E.M.; de Leão Novo, E.M.M.; Vargas, P.N.; Silva, T.S.F.; Manzatto, A.G.; Terborgh, J.; Reis, N.F.C.; Montero, J.C.; Casula, K.R.; Marimon, B.S.; Marimon, B.-H.; Coronado, E.N.H.; Feldpausch, T.R.; Duque, A.; Zartman, C.E.; Arboleda, N.C.; Killeen, T.J.; Mostacedo, B.; Vasquez, R.; Schöngart, J.; Assis, R.L.; Medeiros, M.B.; Simon, M.F.; Andrade, A.; Laurance, W.F.; Camargo, J.L.; Demarchi, L.O.; Laurance, S.G.W.; de Sousa Farias, E.; Nascimento, H.E.M.; Revilla, J.D.C.; Quaresma, A.; Costa, F.R.C.; Vieira, I.C.G.; Cintra, B.B.L.; Castellanos, H.; Brienen, R.; Stevenson, P.R.; Feitosa, Y.; Duivenvoorden, J.F.; Aymard C., G.A.; Mogollón, H.F.; Targhetta, N.; Comiskey, J.A.; Vicentini, A.; Lopes, A.; Damasco, G.; Dávila, N.; García-Villacorta, R.; Levis, C.; Schietti, J.; Souza, P.; Emilio, T.; Alonso, A.; Neill, D.; Dallmeier, F.; Ferreira, L.V.; Araujo-Murakami, A.; Praia, D.; do Amaral, D.D.; Carvalho, F.A.; de Souza, F.C.; Feeley, K.; Arroyo, L.; Pansonato, M.P.; Gribel, R.; Villa, B.; Licona, J.C.; Fine, P.V.A.; Cerón, C.; Baraloto, C.; Jimenez, E.M.; Stropp, J.; Engel, J.; Silveira, M.; Mora, M.C.P.; Petronelli, P.; Maas, P.; Thomas-Caesar, R.; Henkel, T.W.; Daly, D.; Paredes, M.R.; Baker, T.R.; Fuentes, A.; Peres, C.A.; Chave, J.; Pena, J.L.M.; Dexter, K.G.; Silman, M.R.; Jørgensen, P.M.; Pennington, T.; Di Fiore, A.; Valverde, F.C.; Phillips, J.F.; Rivas-Torres, G.; von Hildebrand, P.; van Andel, T.R.; Ruschel, A.R.; Prieto, A.; Rudas, A.; Hoffman, B.; Vela, C.I.A.; Barbosa, E.M.; Zent, E.L.; Gonzales, G.P.G.; Doza, H.P.D.; de Andrade Miranda, I.P.; Guillaumet, J.-L.; Pinto, L.F.M.; de Matos Bonates, L.C.; Silva, N.; Gómez, R.Z.; Zent, S.; Gonzales, T.; Vos, V.A.; Malhi, Y.; Oliveira, A.A.; Cano, A.; Albuquerque, B.W.; Vriesendorp, C.; Correa, D.F.; Torre, E.V.; van der Heijden, G.; Ramirez-Angulo, H.; Ramos, J.F.; Young, K.R.; Rocha, M.; Nascimento, M.T.; Medina, M.N.U.; Tirado, M.; Wang, O.; Sierra, R.; Torres-Lezama, A.; Mendoza, C.; Ferreira, C.; Baider, C.; Villarroel, D.; Balslev, H.; Mesones, I.; Giraldo, L.E.U.; Casas, L.F.; Reategui, M.A.A.; Linares-Palomino, R.; Zagt, R.; Cárdenas, S.; Farfan-Rios, W.; Sampaio, A.F.; Pauletto, D.; Sandoval, E.H.V.; Arevalo, F.R.; Huamantupa-Chuquimaco, I.; Garcia-Cabrera, K.; Hernandez, L.; Gamarra, L.V.; Alexiades, M.N.; Pansini, S.; Cuenca, W.P.; Milliken, W.; Ricardo, J.; Lopez-Gonzalez, G.; Pos, E.; ter Steege, H. pdf  doi
openurl 
  Title (up) Species Distribution Modelling: Contrasting presence-only models with plot abundance data Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 8 Issue Pages 1003  
  Keywords  
  Abstract Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species’ area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Gomes2018 Serial 789  
Permanent link to this record
 

 
Author Marino, N.A.C.; Céréghino, R.; Gilbert, B.; Petermann, J.S.; Srivastava, D.S.; de Omena, P.M.; Bautista, F.O.; Guzman, L.M.; Romero, G.Q.; Trzcinski, M.K.; Barberis, I.M.; Corbara, B.; Debastiani, V.J.; Dézerald, O.; Kratina, P.; Leroy, C.; MacDonald, A.A.M.; Montero, G.; Pillar, V.D.; Richardson, B.A.; Richardson, M.J.; Talaga, S.; Gonçalves, A.Z.; Piccoli, G.C.O.; Jocqué, M.; Farjalla, V.F. doi  openurl
  Title (up) Species niches, not traits, determine abundance and occupancy patterns: A multi-site synthesis Type Journal Article
  Year 2020 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol. Biogeogr.  
  Volume 29 Issue 2 Pages 295-308  
  Keywords abundance; environmental niche; functional distinctiveness; functional traits; metacommunity; niche breadth; niche position; occupancy; abundance; biodiversity; functional group; geographical distribution; invertebrate; Neotropical Region; niche breadth; Invertebrata  
  Abstract Aim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period: 1993–2014. Major taxa studied: Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life. © 2019 John Wiley & Sons Ltd  
  Address Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466822x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 991  
Permanent link to this record
 

 
Author Ruiz-Gonzalez, M.X.; Male, P.J.G.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Quilichini, A.; Orivel, J. openurl 
  Title (up) Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants Type Journal Article
  Year 2011 Publication Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 7 Issue 3 Pages 475-479  
  Keywords ant-fungus association; Cordia nodosa; Chaetothyriales; Hirtella physophora; myrmecophyte; population structure  
  Abstract Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.  
  Address [Leroy, Celine; Dejean, Alain; Quilichini, Angelique; Orivel, Jerome] CNRS, UMR Ecol Forets Guyane 8172, F-97379 Kourou, France, Email: jerome.orivel@ecofog.gf  
  Corporate Author Thesis  
  Publisher Royal Soc Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290515100044 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 317  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: