toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pétillon, J.; Leroy, B.; Djoudi, E.A.; Vedel, V. url  doi
openurl 
  Title (up) Small and large spatial scale coexistence of ctenid spiders in a neotropical forest (French Guiana) Type Journal Article
  Year 2018 Publication Tropical Zoology Abbreviated Journal  
  Volume 31 Issue 2 Pages 85-98  
  Keywords Araneae; flooding; Guianese shield; inselberg; juveniles  
  Abstract While spiders constitute the most abundant and diverse arthropods in many habitats, they remained under-studied, especially in tropical rainforests. The goal of this study is to assess the spatial distribution of the spider family Ctenidae by assessing associations of species diversity and population traits among different habitat conditions. Fieldwork was carried out during 2013 in habitats varying in flooding frequency (plateau vs. flooded forest) and elevation (inselberg vs. lowland) in the Nouragues National Natural Reserve, French Guiana. Assemblage composition, population structure, and trait measurements of one dominant species were assessed using hand collection in replicated quadrats. We found strong effects on ctenid assemblages attributable to both elevation and flooding, with changes in relative abundance of species among habitats, but few correlated densities between species. At the population level, main differences in species distribution between and within habitats were detected only when juveniles were taken into account. No effect of elevation was found on the measurements of traits of the dominant species, but legs were proportionally shorter in flooded habitats, suggesting reduced active dispersal in these habitats. Our study highlights the value of complementary of measures of diversity and traits at different biological scales in Ctenidae.  
  Address UMR CNRS 8175 Ecologie des Forêts de Guyane, Université Antilles-Guyane, Kourou Cedex, Guyane Française, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 23 April 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 800  
Permanent link to this record
 

 
Author Conte, D.E.; Aboulaich, A.; Robert, F.; Olivier-Fourcade, J.; Jumas, J.C.; Jordy, C.; Willmann, P. openurl 
  Title (up) Sn-x[BPO4](1-x) composites as negative electrodes for lithium ion cells: Comparison with amorphous SnB0.6P0.4O2.9 and effect of composition Type Journal Article
  Year 2010 Publication Journal of Solid State Chemistry Abbreviated Journal J. Solid State Chem.  
  Volume 183 Issue 1 Pages 65-75  
  Keywords Sn-based composites; Lithium-ion batteries; Negative electrodes; Mossbauer spectroscopy; LixSn alloys  
  Abstract A comparative study of two Sn-based composite materials as negative electrode for Li-ion accumulators is presented. The former SnB0.6P0.4O2.9 obtained by in-situ dispersion of SnO in an oxide matrix is shown to be an amorphous tin composite oxide (ATCO). The latter Sn-0.72[BPO4](0.28) obtained by ex-situ dispersion of Sri in a borophosphate matrix consists of Sri particles embedded in a crystalline BPO4 matrix. The electrochemical responses of ATCO and Sn-0.72.[BPO4](0.28) composite in galvanostatic mode show reversible capacities of about 450 and 530 mAhg(-1), respectively, with different irreversible capacities (60% and 29%). Analysis of these composite materials by Sn-119 Mossbauer spectroscopy in transmission (TMS) and emission (CEMS) modes confirms that ATCO is an amorphous Sn-II composite oxide and shows that in the case of Sn-0.72[BPO4](0.28), the Surface of the tin clusters is mainly formed by Sn-II in an amorphous interface whereas the bulk of the clusters is mainly formed by Sn-0. The determination of the recoilless free fractions f (Lamb-Mossbauer factors) leads to the effective fraction of both Sn-0 and Sn-II species in such composites. The influence of chemical composition and especially of the surface-to-bulk tin species ratio oil the electrochemical behaviour has been analysed for several Sn-x[BPO4](1-x) composite materials (0.17 < x < 0.91). The cell using the compound Sn-0.72[BPO4](0.28) as active material exhibits interesting electrochemical performances (reversible capacity of 500 mAh g(-1) at C/5 rate). (C) 2009 Elsevier Inc. All rights reserved.  
  Address [Conte, Donato Ercole; Aboulaich, Abdelmaula; Robert, Florent; Olivier-Fourcade, Josette; Jumas, Jean-Claude] Univ Montpellier 2, CNRS, UMR 5253,Inst Charles Gerhardt, Equipe Agregats Interfaces & Mat Energie, F-34095 Montpellier, France, Email: iguanasornione@libero.it  
  Corporate Author Thesis  
  Publisher ACADEMIC PRESS INC ELSEVIER SCIENCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000273834600010 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 83  
Permanent link to this record
 

 
Author Honorio Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Gomero, D.A.; del Castillo Torres, D.; Llampazo, G.F.; Pizango, G.H.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Carvalho, C.; de Lima, H.C.; Cardoso, D.; Degen, B. doi  openurl
  Title (up) SNP markers as a successful molecular tool for assessing species identity and geographic origin of trees in the economically important South American legume genus Dipteryx Type Journal Article
  Year 2020 Publication Journal of Heredity Abbreviated Journal J. Hered.  
  Volume 111 Issue 4 Pages 346-356  
  Keywords Cumaru; Genetic assignment; Leguminosae; Timber verification; article; chloroplast; genetic association; genetic marker; geographic origin; indel mutation; nonhuman; single nucleotide polymorphism; species identification; structure analysis; tonka bean; Dipteryx; Fabaceae  
  Abstract Dipteryx timber has been heavily exploited in South America since 2000s due to the increasing international demand for hardwood. Developing tools for the genetic identification of Dipteryx species and their geographical origin can help to promote legal trading of timber. A collection of 800 individual trees, belonging to 6 different Dipteryx species, was genotyped based on 171 molecular markers. After the exclusion of markers out of Hardy-Weinberg equilibrium or with no polymorphism or low amplification, 83 nuclear, 29 chloroplast, 13 mitochondrial single nucleotide polymorphisms (SNPs), and 2 chloroplast and 5 mitochondrial INDELS remained. Six genetic groups were identified using Bayesian Structure analyses of the nuclear SNPs, which corresponded to the different Dipteryx species collected in the field. Seventeen highly informative markers were identified as suitable for species identification and obtained self-assignment success rates to species level of 78-96%. An additional set of 15 molecular markers was selected to determine the different genetic clusters found in Dipteryx odorata and Dipteryx ferrea, obtaining self-assignment success rates of 91-100%. The success to assign samples to the correct country of origin using all or only the informative markers improved when using the nearest neighbor approach (69-92%) compared to the Bayesian approach (33-80%). While nuclear and chloroplast SNPs were more suitable for differentiating the different Dipteryx species, mitochondrial SNPs were ideal for determining the genetic clusters of D. odorata and D. ferrea. These 32 selected SNPs will be invaluable genetic tools for the accurate identification of species and country of origin of Dipteryx timber. © The American Genetic Association 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com  
  Address Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, Salvador, BA, 40170-115, Brazil  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00221503 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 965  
Permanent link to this record
 

 
Author Stahl, C.; Freycon, V.; Fontaine, S.; Dezecache, C.; Ponchant, L.; Picon-Cochard, C.; Klumpp, K.; Soussana, J.-F.; Blanfort, V. doi  openurl
  Title (up) Soil carbon stocks after conversion of Amazonian tropical forest to grazed pasture: importance of deep soil layers Type Journal Article
  Year 2016 Publication Regional Environmental Change Abbreviated Journal  
  Volume 16 Issue 7 Pages 2059-2069  
  Keywords  
  Abstract Recent studies suggest that carbon (C) is stored in the topsoil of pastures established after deforestation. However, little is known about the long-term capacity of tropical pastures to sequester C in different soil layers after deforestation. Deep soil layers are generally not taken into consideration or are underestimated when C storage is calculated. Here we show that in French Guiana, the C stored in the deep soil layers contributes significantly to C stocks down to a depth of 100 cm and that C is sequestered in recalcitrant soil organic matter in the soil below a depth of 20 cm. The contribution of the 50–100 cm soil layer increased from 22 to 31 % with the age of the pasture. We show that long-term C sequestration in C4 tropical pastures is linked to the development of C3 species (legumes and shrubs), which increase both inputs of N into the ecosystem and the C:N ratio of soil organic matter. The deep soil under old pastures contained more C3 carbon than the native forest. If C sequestration in the deep soil is taken into account, our results suggest that the soil C stock in pastures in Amazonia would be higher with sustainable pasture management, in particular by promoting the development of legumes already in place and by introducing new species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-378x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Stahl2016 Serial 721  
Permanent link to this record
 

 
Author Soong, J.L.; Marañon-Jimenez, S.; Cotrufo, M.F.; Boeckx, P.; Bodé, S.; Guenet, B.; Peñuelas, J.; Richter, A.; Stahl, C.; Verbruggen, E.; Janssens, I.A. doi  openurl
  Title (up) Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation Type Journal Article
  Year 2018 Publication Soil Biology and Biochemistry Abbreviated Journal  
  Volume 122 Issue Pages 141-149  
  Keywords 13c; Cnp; Microbial stoichiometry; Priming; Soil respiration; Tropics  
  Abstract Soil nutrient availability has a strong influence on the fate of soil carbon (C) during microbial decomposition, contributing to Earth's C balance. While nutrient availability itself can impact microbial physiology and C partitioning between biomass and respiration during soil organic matter decomposition, the availability of labile C inputs may mediate the response of microorganisms to nutrient additions. As soil organic matter is decomposed, microorganisms retain or release C, nitrogen (N) or phosphorus (P) to maintain a stoichiometric balance. Although the concept of a microbial stoichiometric homeostasis has previously been proposed, microbial biomass CNP ratios are not static, and this may have very relevant implications for microbial physiological activities. Here, we tested the hypothesis that N, P and potassium (K) nutrient additions impact C cycling in a tropical soil due to microbial stoichiometric constraints to growth and respiration, and that the availability of energy-rich labile organic matter in the soil (i.e. leaf litter) mediates the response to nutrient addition. We incubated tropical soil from French Guiana with a 13C labeled leaf litter addition and with mineral nutrient additions of +K, +N, +NK, +PK and +NPK for 30 days. We found that litter additions led to a ten-fold increase in microbial respiration and a doubling of microbial biomass C, along with greater microbial N and P content. We found some evidence that P additions increased soil CO2 fluxes. Additionally, we found microbial biomass CP and NP ratios varied more widely than CN in response to nutrient and organic matter additions, with important implications for the role of microorganisms in C cycling. The addition of litter did not prime soil organic matter decomposition, except in combination with +NK fertilization, indicating possible P-mining of soil organic matter in this P-poor tropical soil. Together, these results point toward an ultimate labile organic substrate limitation of soil microorganisms in this tropical soil, but also indicate a complex interaction between C, N, P and K availability. This highlights the difference between microbial C cycling responses to N, P, or K additions in the tropics and explains why coupled C, N and P cycle modeling efforts cannot rely on strict microbial stoichiometric homeostasis as an underlying assumption.  
  Address INRA, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université de Guyane, Université des Antilles, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 May 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 804  
Permanent link to this record
 

 
Author Petitjean, C.; Hénault, C.; Perrin, A.-S.; Pontet, C.; Metay, A.; Bernoux, M.; Jehanno, T.; Viard, A.; Roggy, J.-C. doi  openurl
  Title (up) Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method Type Journal Article
  Year 2015 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agriculture, Ecosystems and Environment  
  Volume 208 Issue Pages 64-74  
  Keywords Chop-and-mulch method; Fire-free deforestation; French Guiana; Land use change; Soil N<inf>2</inf>O emissions  
  Abstract In French Guiana, the population growth will result in an increase in demand for agricultural products and thus, will lead to an increase in the amount of tropical forests converted into cropland or pasture. Impacts of different agricultural systems on greenhouse gas (GHG) fluxes have not been studied in French Guiana. In this context, the fire-free chop-and-mulch method was used to convert a tropical forest site to agriculture. This study focused on soil nitrous oxide (N<inf>2</inf>O) emissions and we compared four land uses: (1) the undisturbed tropical forest, (2) recently converted grassland and recently converted croplands (fertilized soybean/maize rotation) with either (3) disk tillage or (4) no tillage.N<inf>2</inf>O measurements were obtained through the chamber technique and conducted over a 1-year period (measurements began 19 months after the forest was cleared). N<inf>2</inf>O fluxes were related to soil parameters measured at each sampling date: nitrate and ammonium contents, gravimetric water content (GWC) and temperature. Through the entire period, the mean (± standard error) and median N<inf>2</inf>O fluxes were 3.8 ± 0.5 and 2.7 gNha-1day-1, respectively for undisturbed tropical forest and 2.4 ± 0.9 and 0.8gNha-1day-1, respectively for grassland (mowed Brachiaria ruziziensis). For croplands, no significant difference was found for N<inf>2</inf>O emissions between both agricultural practices. The mean (± standard error) and median N<inf>2</inf>O fluxes were 8.5 ± 1.2 and 4.0 gNha-1day-1, respectively for disk tillage plots and 8.5 ± 1.3 and 3.6gNha-1day-1, respectively for no tillage plots. Nitrogen inputs (due to the application of fertilizer or due to the mineralization of crop residues) led to higher N<inf>2</inf>O fluxes, resulting in significantly higher mean N<inf>2</inf>O emissions from croplands compared to the forest, when only considering land use effect on N<inf>2</inf>O fluxes in a statistical model. The soil nitrate content, GWC and temperature had a significant positive effect on N<inf>2</inf>O fluxes. Taking into account these soil parameters in another statistical model, N<inf>2</inf>O emissions from croplands were not higher than the natural N<inf>2</inf>O emissions from tropical forest soils. Our results suggest that, if more forest will have to be converted in the course of the expected population growth in French Guiana, it could have low impact on the soil N<inf>2</inf>O fluxes (similar to natural fluxes from forest) with the improving of farming techniques (for example modification of the splitting of N-fertilizer) in the cropping plots. © 2015 Elsevier B.V.  
  Address INRA, UMR EcoFoG, Campus agronomiqueKourou, Guyane Française, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 May 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 601  
Permanent link to this record
 

 
Author Van Langenhove, Leandro ; Verryckt, Lore T. ; Stahl, Clement ; Courtois, Elodie A. ; Urbina, Ifigenia ; Grau, Oriol ; Asensio, Dolores ; Peguero, Guille ; Margalef, Olga ; Freycon, Vincent ; Penuelas, Josep ; Janssens, Ivan A. doi  openurl
  Title (up) Soil nutrient variation along a shallow catena in Paracou, French Guiana Type Journal Article
  Year 2021 Publication Soil Research Abbreviated Journal  
  Volume 59 Issue 2 Pages 130  
  Keywords French Guiana, lowland tropical forest, Paracou, phosphorus, topography, water drainage.  
  Abstract Tropical forests are generally considered to stand upon nutrient-poor soils, but soil nutrient concentrations and availabilities can vary greatly at local scale due to topographic effects on erosion and water drainage. In this study we physically and chemically characterised the soils of 12 study plots situated along a catena with a shallow slope in a tropical rainforest in French Guiana both during the wet and the dry season to evaluate seasonal differences. Soils along the catena were all Acrisols, but differed strongly in their water drainage flux. Over time, this differential drainage has led to differences in soil texture and mineral composition, affecting the adsorption of various nutrients, most importantly phosphorus. The more clayey soils situated on the slope of the catena had higher total concentrations of carbon, nitrogen, phosphorus and several micronutrients, while extractable nutrient concentrations were highest in the sandiest soils situated at the bottom of the catena. We found that carbon, nitrogen and extractable nutrients all varied seasonally, especially in the surface soil layer. These results are interesting because they show that, even at the local scale, small differences in topography can lead to large heterogeneity in nutrient concentrations, which can have large impacts on plant and microbial community organisation at the landscape level.  
  Address  
  Corporate Author Thesis  
  Publisher CSIRO Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1042  
Permanent link to this record
 

 
Author Soong, J.L.; Janssens, I.A.; Grau, O.; Margalef, O.; Stahl, C.; Van Langenhove, L.; Urbina, I.; Chave, J.; Dourdain, A.; Ferry, B.; Freycon, V.; Herault, B.; Sardans, J.; Peñuelas, J.; Verbruggen, E. url  doi
openurl 
  Title (up) Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests Type Journal Article
  Year 2020 Publication Scientific reports Abbreviated Journal Sci Rep  
  Volume 10 Issue 2302 Pages  
  Keywords  
  Abstract We observed strong positive relationships between soil properties and forest dynamics of growth and mortality across twelve primary lowland tropical forests in a phosphorus-poor region of the Guiana Shield. Average tree growth (diameter at breast height) increased from 0.81 to 2.1 mm yr-1 along a soil texture gradient from 0 to 67% clay, and increasing metal-oxide content. Soil organic carbon stocks in the top 30 cm ranged from 30 to 118 tons C ha-1, phosphorus content ranged from 7 to 600 mg kg-1 soil, and the relative abundance of arbuscular mycorrhizal fungi ranged from 0 to 50%, all positively correlating with soil clay, and iron and aluminum oxide and hydroxide content. In contrast, already low extractable phosphorus (Bray P) content decreased from 4.4 to <0.02 mg kg-1 in soil with increasing clay content. A greater prevalence of arbuscular mycorrhizal fungi in more clayey forests that had higher tree growth and mortality, but not biomass, indicates that despite the greater investment in nutrient uptake required, soils with higher clay content may actually serve to sustain high tree growth in tropical forests by avoiding phosphorus losses from the ecosystem. Our study demonstrates how variation in soil properties that retain carbon and nutrients can help to explain variation in tropical forest growth and mortality, but not biomass, by requiring niche specialization and contributing to biogeochemical diversification across this region.  
  Address Institut National Polytechnique Félix Houphouët-Boigny, Ivory CoastYamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 916  
Permanent link to this record
 

 
Author Levionnois, S.; Tysklind, N.; Nicolini, E.; Ferry, B.; Troispoux, V.; Le Moguedec, G.; Morel, H.; Stahl, C.; Coste, S.; Caron, H.; Heuret, P. pdf  url
doi  openurl
  Title (up) Soil variation response is mediated by growth trajectories rather than functional traits in a widespread pioneer Neotropical tree Type Journal Article
  Year 2020 Publication bioRxiv, peer-reviewed by Peer Community in Ecology Abbreviated Journal  
  Volume 351197 Issue v4 Pages  
  Keywords  
  Abstract Trait-environment relationships have been described at the community level across tree species. However, whether interspecific trait-environment relationships are consistent at the intraspecific level is yet unknown. Moreover, we do not know how consistent is the response between organ vs. whole-tree level.We examined phenotypic variability for 16 functional leaf (dimensions, nutrient, chlorophyll) and wood traits (density) across two soil types, Ferralitic Soil (FS) vs. White Sands (WS), on two sites for 70 adult trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a widespread pioneer Neotropical genus that generally dominates early successional forest stages. To understand how soil types impact resource-use through the processes of growth and branching, we examined the architectural development with a retrospective analysis of growth trajectories. We expect soil types to affect both, functional traits in relation to resource acquisition strategy as already described at the interspecific level, and growth strategies due to resource limitations with reduced growth on poor soils.Functional traits were not involved in the soil response, as only two traits-leaf residual water content and K content-showed significant differences across soil types. Soil effects were stronger on growth trajectories, with WS trees having the slowest growth trajectories and less numerous branches across their lifespan.The analysis of growth trajectories based on architectural analysis improved our ability to characterise the response of trees with soil types. The intraspecific variability is higher for growth trajectories than functional traits for C. obtusa, revealing the complementarity of the architectural approach with the functional approach to gain insights on the way trees manage their resources over their lifetime. Soil-related responses of Cecropia functional traits are not the same as those at the interspecific level, suggesting that the effects of the acting ecological processes are different between the two levels. Apart from soil differences, much variation was found across sites, which calls for further investigation of the factors shaping growth trajectories in tropical forests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 931  
Permanent link to this record
 

 
Author Leponce, Maurice ; Corbara, Bruno ; Delabie, Jacques H.C. ; Orivel, Jérome ; Aberlenc, Henri-Pierre ; Bail, Johannes ; Barrios, Hector ; Campos, Ricardo I. ; Cardoso do Nascimento, Ivan ; Compin, Arthur ; Didham, Raphaël K. ; Floren, Andreas ; Medianero, Enrique ; Ribeiro, Sérvio P. ; Roisin, Yves ; Schmidl, Juergen ; Tishechkin, Alexey K. ; Winchester, Neville N. ; Basset, Yves ; Dejean, Alain doi  openurl
  Title (up) Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest Type Journal Article
  Year 2021 Publication Basic and Applied Abbreviated Journal  
  Volume 56 Issue Pages 32-44  
  Keywords  
  Abstract Ants are a major ecological group in tropical rainforests. Few studies in the Neotropics have documented the distribution of ants from the ground to the canopy, and none have included the understorey. A previous analysis of an intensive arthropod study in Panama, involving 11 sampling methods, showed that the factors influencing ant β diversity (i.e., changes in assemblage composition) were, in decreasing order of importance, the vertical (height), temporal (season), and horizontal (geographic distance) dimensions. In the present study, we went one step further and aimed (1) to identify the best sampling methods to study the entire ant assemblage across the three strata, (2) to test if all strata show a similar horizontal β diversity and (3) to analyze the functional structure of the entire ant assemblage. We identified 405 ant species from 11 subfamilies and 68 genera. Slightly more species were sampled in the canopy than on the ground; they belonged to distinct sub-assemblages. The understorey fauna was mainly a mixture of species found in the other two strata. The horizontal β diversity between sites was similar for the three strata. About half of the ant species foraged in two (29%) or three (25%) strata. A single method, aerial flight interception traps placed alongside tree trunks, acting as arboreal pitfall traps, collected half of the species and reflected the vertical stratification. Using the functional traits approach, we observed that generalist species with mid-sized colonies were by far the most numerous (31%), followed by ground- or litter-dwelling species, either specialists (20%), or generalists (16%), and arboreal species, either generalists (19%) or territorially dominant (8%), and finally army ants (5%). Our results reinforce the idea that a proper understanding of the functioning of ant assemblages requires the inclusion of arboreal ants in survey programs.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1026  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: