toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Herault, B.; Ouallet, J.; Blanc, L.; Wagner, F.; Baraloto, C. openurl 
  Title (down) Growth responses of neotropical trees to logging gaps Type Journal Article
  Year 2010 Publication Journal of Applied Ecology Abbreviated Journal J. Appl. Ecol.  
  Volume 47 Issue 4 Pages 821-831  
  Keywords canopy openings; functional traits; incidence function model; light partitioning; selective logging; tree growth rates; tropical rain forest  
  Abstract P>1. Modelling growth strategies among tropical trees is an important objective in predicting the response of tree dynamics to selective logging and in gaining insights into the ecological processes that structure tree communities in managed tropical forests. 2. We developed a disturbance index to model the effects of distance to and area of logging gaps on stem radial growth rates. This index was tested using census data of 43 neotropical tree species, representing a variety of life-history strategies and developmental stages, from a selectively logged forest at Paracou, French Guiana. Growth strategies were analyzed in light of two indicators: the inherent species growth rate (when disturbance index is null) and the species reaction (change in growth rate) to logging gaps. 3. Across species, the predicted inherent growth rates in unlogged forest ranged from 0 center dot 25 to 6 center dot 47 mm year-1, with an average growth of 2 center dot 29 mm year-1. Ontogenetic shifts in inherent growth rate were found in 26 of the 43 species. 4. Species growth response to logging gaps varied widely among species but was significantly positive for 27 species. The effect of ontogeny on growth response to logging was retained for 14 species, and species with inherent fast growth rate (5 mm year-1) responded less to logging gap disturbances than did species with slow inherent growth (1 mm year-1). 5. Functional traits explained 19-42% of the variation in the inherent growth rate and in species' response across all developmental stages. Whereas maximum diameters and seed mass were strong predictors of inherent growth rate, maximum height, wood density, mode of germination and stem architecture were additionally involved in tree growth response. 6. Synthesis and applications: This study provides a necessary framework for developing predictive post-logging growth models for the thousands of species comprising tropical forests and is sufficiently general to apply to a broad range of managed tropical forests.  
  Address [Herault, Bruno] Univ Antilles Guyane, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: bruno.herault@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279405100012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 53  
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Blanc, L.; Picard, N.; Sist, P.; Dick, J.; Nasi, R.; Swaine, M.D.; Forni, E. openurl 
  Title (down) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy Type Journal Article
  Year 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 8 Pages 785-796  
  Keywords cross-comparisons; functional groups; modelling strategy; species classifications  
  Abstract The high species diversity of mixed tropical forests hinders the development of forest dynamic models. A solution commonly adopted is to cluster species in groups. There are various methods for grouping species that can be linked to three strategies (i) the ecological subjective strategy, (ii) the ecological data-driven strategy, and (iii) the dynamic process strategy. In the first two strategies a species will be assigned to a single group while in the latter strategy, a specific grouping is defined for each process of population dynamics ( typically based on recruitment, growth, mortality). Little congruency or convergence is observed in the literature between any two classifications of species. This may be explained by the independence between the sets of tree characters used to build species groups, or by the intra-specific variability of these characters. We therefore recommend the dynamic process strategy as the most convenient strategy for building groups of species.  
  Address Cirad Foret, F-34398 Montpellier, France, Email: sylvie.gourlet-fleury@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000233972500001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 228  
Permanent link to this record
 

 
Author Soudani, K.; Hmimina, G.; Delpierre, N.; Pontailler, J.-Y.; Aubinet, M.; Bonal, D.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; Guyon, D.; Granier, A.; Gross, P.; Heinesh, B.; Longdoz, B.; Loustau, D.; Moureaux, C.; Ourcival, J.-M.; Rambal, S.; Saint André, L.; Dufrêne, E. url  openurl
  Title (down) Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes Type Journal Article
  Year 2012 Publication Remote Sensing of Environment Abbreviated Journal Remote Sens. Environ.  
  Volume 123 Issue Pages 234-245  
  Keywords Crops; Evergreen and deciduous forests; Ground-based NDVI; Herbaceous savanna; NDVI time-series; Phenology; Tropical rain forest  
  Abstract Plant phenology characterises the seasonal cyclicity of biological events such as budburst, flowering, fructification, leaf senescence and leaf fall. These biological events are genetically pre-determined but also strongly modulated by climatic conditions, particularly temperature, daylength and water availability. Therefore, the timing of these events is considered as a good indicator of climate change impacts and as a key parameter for understanding and modelling vegetation-climate interactions. In situ observations, empirical or bioclimatic models and remotely sensed time-series data constitute the three possible ways for monitoring the timing of plant phenological events. Remote sensing has the advantage of being the only way of surface sampling at high temporal frequency and, in the case of satellite-based remote sensing, over large regions. Nevertheless, exogenous factors, particularly atmospheric conditions, lead to some uncertainties on the seasonal course of surface reflectance and cause bias in the identification of vegetation phenological events. Since 2005, a network of forest and herbaceous sites has been equipped with laboratory made NDVI sensors to monitor the temporal dynamics of canopy structure and phenology at an intra-daily time step. In this study, we present recent results obtained in several contrasting biomes in France, French Guiana, Belgium and Congo. These sites represent a gradient of vegetation ecosystems: the main evergreen and deciduous forest ecosystems in temperate climate region, an evergreen tropical rain forest in French Guiana, an herbaceous savanna ecosystem in Congo, and a succession of three annual crops in Belgium. In this paper, (1) we provide an accurate description of the seasonal dynamics of vegetation cover in these different ecosystems (2) we identify the most relevant remotely sensed markers from NDVI time-series for determining the dates of the main phenological events that characterize these ecosystems and (3) we discuss the relationships between temporal canopy dynamics and climate factors. In addition to its importance for phenological studies, this ground-based Network of NDVI measurement provides data needed for the calibration and direct validation of satellite observations and products. © 2012 Elsevier Inc.  
  Address INRA, Unité Biogéochimie des Ecosystèmes Forestiers, Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00344257 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 August 2012; Source: Scopus; Coden: Rseea; doi: 10.1016/j.rse.2012.03.012; Language of Original Document: English; Correspondence Address: Soudani, K.; University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of OrsayFrance; email: kamel.soudani@u-psud.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 422  
Permanent link to this record
 

 
Author Dezecache, Camille; Faure, Emmanuel; Gond, Valéry; Salles, Jean-Michel; Vieilledent, Ghislain; Herault, Bruno pdf  url
doi  openurl
  Title (down) Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation Type Journal Article
  Year 2017 Publication Environmental Research Letters Abbreviated Journal  
  Volume 12 Issue 3 Pages 034013  
  Keywords  
  Abstract Tropical forests of the Guiana Shield are the most affected by gold-mining in South America, experiencing an exponential increase in deforestation since the early 2000’s. Using yearly deforestation data encompassing Guyana, Suriname, French Guiana and the Brazilian State of Amapá, we demonstrated a strong relationship between deforestation due to gold-mining and gold-prices at the regional scale. In order to assess additional drivers of deforestation due to gold-mining, we focused on the national scale and highlighted the heterogeneity of the response to gold-prices under different political contexts. Deforestation due to gold-mining over the Guiana Shield occurs mainly in Guyana and Suriname. On the contrary, past and current repressive policies in Amapá and French Guiana likely contribute to the decorrelation of deforestation and gold prices. In this work, we finally present a case study focusing on French Guiana and Suriname, two neighbouring countries with very different levels of law enforcement against illegal gold-mining. We developed a modelling framework to estimate potential deforestation leakages from French Guiana to Suriname in the border areas. Based on our assumptions, we estimated a decrease in deforestation due to gold-mining of approx. 4300 hectares in French Guiana and an increase of approx. 12 100 hectares in Suriname in response to the active military repression of illegal gold-mining launched in French Guiana. Gold-mining in the Guiana Shield provides challenging questions regarding REDD+ implementation. These questions are discussed at the end of this study and are important to policy makers who need to provide sustainable alternative employment to local populations in order to ensure the effectiveness of environmental policies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 738  
Permanent link to this record
 

 
Author Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Baruffol, M.; Bourland, N.; Bruelheide, H.; Daïnou, K.; de Gouvenain, R.C.; Doucet, J.-L.; Doust, S.; Fine, P.V.A.; Fortunel, C.; Haase, J.; Holl, K.D.; Jactel, H.; Li, X.; Kitajima, K.; Koricheva, J.; Martínez-Garza, C.; Messier, C.; Paquette, A.; Philipson, C.; Piotto, D.; Poorter, L.; Posada, J.M.; Potvin, C.; Rainio, K.; Russo, S.E.; Ruiz-Jaen, M.; Scherer-Lorenzen, M.; Webb, C.O.; Wright, S.J.; Zahawi, R.A.; Hector, A. url  openurl
  Title (down) Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why Type Journal Article
  Year 2015 Publication Journal of Ecology Abbreviated Journal Journal of Ecology  
  Volume 103 Issue 4 Pages 978-989  
  Keywords Functional ecology; FunDivEurope; Growth; Hierarchical models; Plant population and community dynamics; Relative growth rate; Size-standardized growth rate; TreeDivNet  
  Abstract Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society.  
  Address Department of Plant Sciences, University of Oxford, Oxford, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 July 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 609  
Permanent link to this record
 

 
Author Poyatos, Rafael ; Granda, Victor ; Flo, Victor ; Adams, Mark A. ; Adorjan, Balazs ; Aguadé, David ; Aidar, Marcos P.M. ; Allen, Scott ; Alvarado-Barrientos, M.Susana ; Anderson-Teixeira, Kristina J. ; Aparecido, Luiza Maria ; Arain, M. Altaf ; Aranda, Ismael ; Asbjornsen, Heidi ; Baxter, Robert doi  openurl
  Title (down) Global transpiration data from sap flow measurements: the SAPFLUXNET database Type Journal Article
  Year 2021 Publication Earth System Science Data Abbreviated Journal  
  Volume 13 Issue 6 Pages 2607–2649  
  Keywords  
  Abstract Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.  
  Address  
  Corporate Author Thesis  
  Publisher COPERNICUS PUBLICATIONS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1058  
Permanent link to this record
 

 
Author Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; Kattge, J.; Pillar, V.D.; Schrodt, F.; Mahecha, M.D.; Peet, R.K.; Sandel, B.; van Bodegom, P.; Altman, J.; Alvarez-Dávila, E.; Arfin Khan, M.A.S.; Attorre, F.; Aubin, I.; Baraloto, C.; Barroso, J.G.; Bauters, M.; Bergmeier, E.; Biurrun, I.; Bjorkman, A.D.; Blonder, B.; Čarni, A.; Cayuela, L.; Černý, T.; Cornelissen, J.H.C.; Craven, D.; Dainese, M.; Derroire, G.; De Sanctis, M.; Díaz, S.; Doležal, J.; Farfan-Rios, W.; Feldpausch, T.R.; Fenton, N.J.; Garnier, E.; Guerin, G.R.; Gutiérrez, A.G.; Haider, S.; Hattab, T.; Henry, G.; Hérault, B.; Higuchi, P.; Hölzel, N.; Homeier, J.; Jentsch, A.; Jürgens, N.; Kącki, Z.; Karger, D.N.; Kessler, M.; Kleyer, M.; Knollová, I.; Korolyuk, A.Y.; Kühn, I.; Laughlin, D.C.; Lens, F.; Loos, J.; Louault, F.; Lyubenova, M.I.; Malhi, Y.; Marcenò, C.; Mencuccini, M.; Müller, J.V.; Munzinger, J.; Myers-Smith, I.H.; Neill, D.A.; Niinemets, Ü.; Orwin, K.H.; Ozinga, W.A.; Penuelas, J.; Pérez-Haase, A.; Petřík, P.; Phillips, O.L.; Pärtel, M.; Reich, P.B.; Römermann, C.; Rodrigues, A.V.; Sabatini, F.M.; Sardans, J.; Schmidt, M.; Seidler, G.; Silva Espejo, J.E.; Silveira, M.; Smyth, A.; Sporbert, M.; Svenning, J.-C.; Tang, Z.; Thomas, R.; Tsiripidis, I.; Vassilev, K.; Violle, C.; Virtanen, R.; Weiher, E.; Welk, E.; Wesche, K.; Winter, M.; Wirth, C.; Jandt, U. url  doi
openurl 
  Title (down) Global trait–environment relationships of plant communities Type Journal Article
  Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal  
  Volume 2 Issue 12 Pages 1906-1917  
  Keywords  
  Abstract Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-334x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Bruelheide2018 Serial 844  
Permanent link to this record
 

 
Author Öpik, M.; Zobel, M.; Cantero, J.J.; Davison, J.; Facelli, J.M.; Hiiesalu, I.; Jairus, T.; Kalwij, J.M.; Koorem, K.; Leal, M.E.; Liira, J.; Metsis, M.; Neshataeva, V.; Paal, J.; Phosri, C.; Põlme, S.; Reier, Ü.; Saks, Ü.; Schimann, H.; Thiéry, O.; Vasar, M.; Moora, M. url  openurl
  Title (down) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi Type Journal Article
  Year 2013 Publication Mycorrhiza Abbreviated Journal  
  Volume 23 Issue 5 Pages 411-430  
  Keywords 454-sequencing; Biogeography; Database; Diversity; Fungal macroecology; Glomeromycota  
  Abstract We aimed to enhance understanding of the molecular diversity of arbuscular mycorrhizal fungi (AMF) by building a new global dataset targeting previously unstudied geographical areas. In total, we sampled 96 plant species from 25 sites that encompassed all continents except Antarctica. AMF in plant roots were detected by sequencing the nuclear SSU rRNA gene fragment using either cloning followed by Sanger sequencing or 454-sequencing. A total of 204 AMF phylogroups (virtual taxa, VT) were recorded, increasing the described number of Glomeromycota VT from 308 to 341 globally. Novel VT were detected from 21 sites; three novel but nevertheless widespread VT (Glomus spp. MO-G52, MO-G53, MO-G57) were recorded from six continents. The largest increases in regional VT number were recorded in previously little-studied Oceania and in the boreal and polar climatic zones – this study providing the first molecular data from the latter. Ordination revealed differences in AM fungal communities between different continents and climatic zones, suggesting that both biogeographic history and environmental conditions underlie the global variation of those communities. Our results show that a considerable proportion of Glomeromycota diversity has been recorded in many regions, though further large increases in richness can be expected in remaining unstudied areas. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address INRA-Joint Research Unit Ecology of Guiana Forests (Ecofog), campus agronomique, BP 709, 97387 Kourou cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 June 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 493  
Permanent link to this record
 

 
Author Thomas, H.J.D.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Kattge, J.; Diaz, S.; Vellend, M.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; Henry, G.H.R.; Hollister, R.D.; Normand, S.; Prevéy, J.S.; Rixen, C.; Schaepman-Strub, G.; Wilmking, M.; Wipf, S.; Cornwell, W.K.; Beck, P.S.A.; Georges, D.; Goetz, S.J.; Guay, K.C.; Rüger, N.; Soudzilovskaia, N.A.; Spasojevic, M.J.; Alatalo, J.M.; Alexander, H.D.; Anadon-Rosell, A.; Angers-Blondin, S.; te Beest, M.; Berner, L.T.; Björk, R.G.; Buchwal, A.; Buras, A.; Carbognani, M.; Christie, K.S.; Collier, L.S.; Cooper, E.J.; Elberling, B.; Eskelinen, A.; Frei, E.R.; Grau, O.; Grogan, P.; Hallinger, M.; Heijmans, M.M.P.D.; Hermanutz, L.; Hudson, J.M.G.; Johnstone, J.F.; Hülber, K.; Iturrate-Garcia, M.; Iversen, C.M.; Jaroszynska, F.; Kaarlejarvi, E.; Kulonen, A.; Lamarque, L.J.; Lantz, T.C.; Lévesque, E.; Little, C.J.; Michelsen, A.; Milbau, A.; Nabe-Nielsen, J.; Nielsen, S.S.; Ninot, J.M.; Oberbauer, S.F.; Olofsson, J.; Onipchenko, V.G.; Petraglia, A.; Rumpf, S.B.; Shetti, R.; Speed, J.D.M.; Suding, K.N.; Tape, K.D.; Tomaselli, M.; Trant, A.J.; Treier, U.A.; Tremblay, M.; Venn, S.E.; Vowles, T.; Weijers, S.; Wookey, P.A.; Zamin, T.J.; Bahn, M.; Blonder, B.; van Bodegom, P.M.; Bond-Lamberty, B.; Campetella, G.; Cerabolini, B.E.L.; Chapin, F.S., III; Craine, J.M.; Dainese, M.; Green, W.A.; Jansen, S.; Kleyer, M.; Manning, P.; Niinemets, Ü.; Onoda, Y.; Ozinga, W.A.; Peñuelas, J.; Poschlod, P.; Reich, P.B.; Sandel, B.; Schamp, B.S.; Sheremetiev, S.N.; de Vries, F.T. doi  openurl
  Title (down) Global plant trait relationships extend to the climatic extremes of the tundra biome Type Journal Article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 11 Issue 1351 Pages  
  Keywords biome; climate change; extreme event; global change; growth; interspecific interaction; plant community; tundra; article; plant community; prediction; tundra; warming; classification; climate; ecosystem; genetics; plant; plant development; Climate; Ecosystem; Plant Development; Plants; Tundra  
  Abstract The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world. © 2020, Crown.  
  Address Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, Amsterdam, 1090 GE, Netherlands  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20411723 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 947  
Permanent link to this record
 

 
Author Guitet, S.; Pélissier, R.; Brunaux, O.; Jaouen, G.; Sabatier, D. url  openurl
  Title (down) Geomorphological landscape features explain floristic patterns in French Guiana rainforest Type Journal Article
  Year 2015 Publication Biodiversity and Conservation Abbreviated Journal Biodiversity and Conservation  
  Volume 24 Issue 5 Pages 1215-1237  
  Keywords Geodiversity; Geomorphology; Landscapes; Species distribution; Tree community  
  Abstract Geomorphic landscape features have been suggested as indicators of forest diversity. However, their explanatory power has not yet been explicitly tested at a regional scale in tropical rainforest. We used forest inventories conducted according to a stratified sampling design (3,132 plots in 111 transects at 33 sites) and holistic multi-scale geomorphological mapping derived from a Shuttle Radar Topography Mission digital elevation model to describe and explain spatial patterns in floristic composition across French Guiana (80,000 km2). We measured and identified 123,906 trees with DBH ≥20 cm and used constrained and unconstrained ordinations to analyze variations in the abundance of 221 taxa and 51 families. Variance partitioning and variograms were used to detect spatial patterns in species composition, compare the explanatory power of spatial and environmental factors, and select the variables that best explain forest composition. Strong floristic patterns corresponded to a major latitudinal gradient and significant sub-regional floristic structure. Geomorphological landscapes shaped by historic climate fluctuations and major geological events successfully captured these patterns and explained the variation in abundance of 80 taxa, corresponding to 65 % of the inventoried trees. Our findings suggest that long-term forest dynamics are under substantial “geomorphographic control”. A geomorphological perspective on landscapes that incorporates current and past environmental filters and historical biogeographical processes could thus be used more systematically in tropical regions for regional planning and forest conservation. © 2014, Springer Science+Business Media Dordrecht.  
  Address UMR EcoFoG, AgroParisTech, Campus agronomique, Guyane Française, BP 316, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 September 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: