toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Doughty, C.E.; Wolf, A.; Baraloto, C.; Malhi, Y. url  openurl
  Title (up) Interdependency of plants and animals in controlling the sodium balance of ecosystems and the impacts of global defaunation Type Journal Article
  Year 2016 Publication Ecography Abbreviated Journal Ecography  
  Volume 39 Issue 2 Pages 204-212  
  Keywords  
  Abstract Sodium, an element which is needed by animals but often toxic in high concentrations to plants, may be deficient and limit animal abundance in inland continental regions, but may be overabundant and limit plant productivity in coastal regions. Here we present data from 50 independent plots (including leaf data from more than 2480 individual trees) showing that leaves in the Amazon basin uptake high amounts of sodium (Na) in a manner more similar to the essential cation potassium (K) than to the toxic cation aluminium (Al). Leaf Na increases linearly with soil Na concentrations, and there is no apparent mechanism for selective exclusion of Na in comparison to K, a key attribute of halophytes. This indicates that the Amazon basin is broadly non-halophytic and increased sodium concentrations in non-halophyte plants often decrease plant productivity. Total Na concentrations are ∼ 10 times higher in coastal regions than inland regions. Such concentration gradients in nutrients may have been reduced in the past because large animals that were abundant in the Pleistocene have been hypothesized to play a large role in reducing nutrient concentration gradients at continental scales. We use a diffusion model and a Na loss rate based on empirical data to estimate that large animals may have moved significant quantities of Na inland away from coastal regions in the Amazon Basin. Therefore, our simple model suggests that large animals may play an important, yet diminishing, role in maintaining the sodium balance of the planet. © 2016 Nordic Society Oikos.  
  Address INRA UMR Ecologie des Forêts de Guyane, French Guiana, and International Center for Tropical Botany, Dept of Biological Sciences, Florida International Univ., Miami, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :2; Export Date: 12 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 657  
Permanent link to this record
 

 
Author Bossu, J.; Lehnebach, R.; Corn, S.; Regazzi, A.; Beauchene, J.; Clair, B. url  doi
openurl 
  Title (up) Interlocked grain and density patterns in Bagassa guianensis: changes with ontogeny and mechanical consequences for trees Type Journal Article
  Year 2018 Publication Trees Abbreviated Journal  
  Volume 32 Issue 6 Pages 1643-1655  
  Keywords  
  Abstract Interlocked grain and basic density increase from pith to bark in Bagassa guianensis and greatly improve trunk torsional stiffness and wood tenacity in the radial plane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2285 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Bossu2018 Serial 852  
Permanent link to this record
 

 
Author Christensen-Dalsgaard, K.K.; Ennos, A.R.; Fournier, M. url  openurl
  Title (up) Interrelations between hydraulic and mechanical stress adaptations in woody plants Type Journal Article
  Year 2008 Publication Plant Signaling and Behavior Abbreviated Journal Plant. Signal. Behav.  
  Volume 3 Issue 7 Pages 463-465  
  Keywords Conductivity; Modulus of elasticity; Strain; Tree ecophysiology; Tropical trees; Wood anatomy; Yield stress  
  Abstract The fields of plant water relations and plant biomechanics have traditionally been studied separately even though often the same tissues are responsible for water transport and mechanical support. There is now increasing evidence that hydraulic and mechanical adaptations may influence one another. We studied the changes in the hydraulic and mechanical properties of the wood along lateral roots of two species of buttressed trees. In these roots, the mechanical contstraints quantified by strain measurements are known to decrease distally. Further, we investigated the effect of mechanical loading on the vessel anatomy in these and four other species of tropical trees. We found that as the strain decreased, the wood became progressively less stiff and strong but the conductivity increased exponentially. This was reflected in that adaptations towards re-enforcing mechanically loaded areas resulted in xylem with fewer and smaller vessels. In addition a controlled growth experiment on three tree species showed that drought adaptation may results in plants with stronger and stiffer tissue. Our results indicate that hydraulic and mechanical stress adaptations may be interrelated, and so support recent studied suggesting that physiological responses are complex balances rather than pure optimisations. ©2008 Landes Bioscience.  
  Address University of Alberta, Department of Renewable Resources, 4-44 Earth Science Bldg., Edmonton, AB T6G 2E3, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 15592316 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 January 2012; Source: Scopus; Language of Original Document: English; Correspondence Address: Christensen-Dalsgaard, K. K.; University of Alberta, Department of Renewable Resources, 4-44 Earth Science Bldg., Edmonton, AB T6G 2E3, Canada; email: kkchrist@ualberta.ca Approved no  
  Call Number EcoFoG @ webmaster @ Serial 380  
Permanent link to this record
 

 
Author Delaval, M.; Henry, M.; Charles-Dominique, P. openurl 
  Title (up) Interspecific competition and niche partitioning: Example of a neotropical rainforest bat community Type Journal Article
  Year 2005 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal Rev. Ecol.-Terre Vie  
  Volume 60 Issue 2 Pages 149-165  
  Keywords  
  Abstract To understand the organization of a bat community and the coexistence of sympatric species, it is essential to understand how species use and share common resources. First, we describe a bat community in a primary rainforest of French Guiana. The presence of particular roosting sites, such as caves, and the absence of disturbances are important local factors in structuring communities. In the course of this study, we focused on the three most common species of three vegetarian bat guilds (understorey frugivores, canopy frugivores and nectarivores). The local coexistence of these species is possible thanks to space, food and/or time partitioning. Space partitioning is consistent with the hypothesis that smaller bats with a more manoeuvrable flight tend to occupy more cluttered space less attractive to their competitors and have smaller home range. We observed a time partitioning that is likely to reduce competition among some frugivorous bat species by reducing direct interference during foraging. Besides an interest for the field community ecology, this study of a community living in a primary forest can be used as a reference for non disturbed habitat for conservation purposes.  
  Address Dept Ecol & Gestion Biodivers, UMR 5176, F-91800 Brunoy, France, Email: marguerite.delaval@wanadoo.fr  
  Corporate Author Thesis  
  Publisher SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0249-7395 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000230973300005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 231  
Permanent link to this record
 

 
Author Bastias, C.C.; Fortunel, C.; Valladares, F.; Baraloto, C.; Benavides, R.; Cornwell, W.; Markesteijn, L.; De Oliveira, A.A.; Sansevero, J.B.B.; Vaz, M.C.; Kraft, N.J.B. pdf  url
doi  openurl
  Title (up) Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient Type Journal Article
  Year 2017 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 12 Issue 2 Pages e0172495  
  Keywords  
  Abstract Disentangling the mechanisms that shape community assembly across diversity gradients is a central matter in ecology. While many studies have explored community assembly through species average trait values, there is a growing understanding that intraspecific trait variation (ITV) can also play a critical role in species coexistence. Classic biodiversity theory hypothesizes that higher diversity at species-rich sites can arise from narrower niches relative to species-poor sites, which would be reflected in reduced ITV as species richness increases. To explore how ITV in woody plant communities changes with species richness, we compiled leaf trait data (leaf size and specific leaf area) in a total of 521 woody plant species from 21 forest communities that differed dramatically in species richness, ranging from boreal to tropical rainforests. At each forest, we assessed ITV as an estimate of species niche breadth and we quantified the degree of trait overlap among co-occurring species as a measure of species functional similarity. We found ITV was relatively invariant across the species richness gradient. In addition, we found that species functional similarity increased with diversity. Contrary to the expectation from classic biodiversity theory, our results rather suggest that neutral processes or equalizing mechanisms can be acting as potential drivers shaping community assembly in hyperdiverse forests. © This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.  
  Address Universidade Federal Rural do Rio de Janeiro-UFRRJ, Departamento de Ciencias Ambientais-DCA, Instituto de Florestas, Seropédica, Rio de Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 March 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 744  
Permanent link to this record
 

 
Author Touchard, A.;Dejean, A.;Orivel, J. pdf  doi
openurl 
  Title (up) Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (Formicidae: Ponerinae) from French Guiana Type Journal Article
  Year 2015 Publication Journal of Hymenoptera Research Abbreviated Journal Journal of Hymenoptera Research  
  Volume 47 Issue Pages 87-101  
  Keywords  
  Abstract Ant venoms are complex cocktails of toxins employed to subdue prey and to protect the colony from predators and microbial pathogens. Although the extent of ant venom peptide diversity remains largely unexplored, previous studies have revealed the presence of numerous bioactive peptides in most stinging ant venoms. We investigated the venom peptidome of the ponerine ant Odontomachus haematodus using LC-MS analysis and then verified whether the division of labor in the colonies and their geographical location are correlated with differences in venom composition. Our results reveal that O. haematodus venom is comprised of 105 small linear peptides. The venom composition does not vary between the different castes (i.e., nurses, foragers and queens), but an intraspecific variation in peptide content was observed, particularly when the colonies are separated by large distances. Geographical variation appears to increase the venom peptide repertoire of this ant species, demonstrating its intraspecific venom plasticity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 643  
Permanent link to this record
 

 
Author Revel, N.; Alvarez, N.; Gibernau, M.; Espíndola, A. url  openurl
  Title (up) Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies Type Journal Article
  Year 2012 Publication Arthropod-Plant Interactions Abbreviated Journal Arthropod-Plant Interact.  
  Volume 6 Issue 1 Pages 35-44  
  Keywords Araceae; Flower evolution; Plant-insect interactions; Reproductive strategy; Sex allocation  
  Abstract The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i. e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i. e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems. © 2011 Springer Science+Business Media B.V.  
  Address CNRS-UMR 8172 Ecologie des Forêts de Guyane, BP 709, 97387 Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18728855 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 March 2012; Source: Scopus; doi: 10.1007/s11829-011-9164-1; Language of Original Document: English; Correspondence Address: Espíndola, A.; Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland; email: MariaAnahi.Espindola@unil.ch Approved no  
  Call Number EcoFoG @ webmaster @ Serial 384  
Permanent link to this record
 

 
Author Ferry, B.; Bontemps, J.-D.; Blanc, L.; Baraloto, C. url  openurl
  Title (up) Is climate a stronger driver of tree growth than disturbance? A comment on Toledo et al. (2011) Type Journal Article
  Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 100 Issue 5 Pages 1065-1068  
  Keywords Basal area change; Bolivia; Climate; Disturbance; Logging; Plant-climate interactions; Tree growth; Tropical forest  
  Abstract 1.A recent article published by Toledo (2011b) investigates the effects of spatial variations in climate and soil, and of logging disturbance, on tree and forest growth in Bolivia. It concludes that climate is the strongest driver of tree and forest growth and that climate change may therefore have large consequences for forest productivity and carbon sequestration. However, serious methodological and conceptual discrepancies have been found that challenge these conclusions. 2.Because of an errant coding of 'time after logging' in the regression analysis, and because floristic changes induced by logging could not be incorporated into the analysis, the effect of logging on the average diameter growth is likely to have been strongly underestimated. 3.Basal area growth was improperly calculated as basal area change, and it displayed surprisingly high values, even among unlogged plots. We hypothesize that either these plots may be actually located in secondary forests recovering from past logging, or measurement biases may have hampered the data set. 4.Regardless of climate-growth relationships established across these plots, any inference concerning the potential effects of climate change on forest growth would require a specific quantitative assessment. 5.Synthesis. It is critical to re-assess the relative weight of climate and logging disturbance as driving factors of tree and forest growth, and to find an explanation for the very high basal area increment reported among the unlogged plots. We provide specific recommendations for further analyses of this and similar data sets. © 2012 British Ecological Society.  
  Address INRA, UMR Ecologie des Forêts de Guyane, 97379 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 1; Export Date: 4 September 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01895.x; Language of Original Document: English; Correspondence Address: Ferry, B.; AgroParisTech, ENGREF-Nancy, UMR 1092, F-54000 Nancy, France; email: bruno.ferry@engref.agroparistech.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 426  
Permanent link to this record
 

 
Author Clair, B.; Déjardin, A.; Pilate, G.; Alméras, T. pdf  url
doi  openurl
  Title (up) Is the G-layer a tertiary cell wall? Type Journal Article
  Year 2018 Publication Frontiers in Plant Science Abbreviated Journal  
  Volume 9 Issue Pages 623  
  Keywords Flax; G-layer; Gelatinous layer; Maturation stress; Secondary cell wall; Tension wood; Tertiary cell wall  
  Abstract  
  Address LMGC, CNRS, Université de Montpellier, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 31 May 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 805  
Permanent link to this record
 

 
Author Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina doi  openurl
  Title (up) Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species Type Journal Article
  Year 2021 Publication Annals of Forest Science Abbreviated Journal  
  Volume 78 Issue 4 Pages 78-87  
  Keywords Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem  
  Abstract Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1034  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: