toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bremaud, I.; Cabrolier, P.; Gril, J.; Clair, B.; Gerard, J.; Minato, K.; Thibaut, B. openurl 
  Title (up) Identification of anisotropic vibrational properties of Padauk wood with interlocked grain (vol 44, pg 335, 2010) Type Journal Article
  Year 2010 Publication Wood Science and Technology Abbreviated Journal Wood Sci. Technol.  
  Volume 44 Issue 4 Pages 705-705  
  Keywords  
  Abstract  
  Address [Bremaud, Iris; Minato, Kazuya] Kyoto Prefectural Univ, Grad Sch Life & Environm Sci, Lab Forest Resource Circulating Circles, Kyoto 6068522, Japan, Email: iris_bremaud@hotmail.com  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-7719 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283087900013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 24  
Permanent link to this record
 

 
Author Aubry-Kientz, M.; Rossi, V.; Wagner, F.; Herault, B. pdf  url
openurl 
  Title (up) Identifying climatic drivers of tropical forest dynamics Type Journal Article
  Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 12 Issue 19 Pages 5583-5596  
  Keywords  
  Abstract In the context of climate change, identifying and then predicting the impacts of climatic drivers on tropical forest dynamics is becoming a matter of urgency. To look at these climate impacts, we used a coupled model of tropical tree growth and mortality, calibrated with forest dynamic data from the 20-year study site of Paracou, French Guiana, in order to introduce and test a set of climatic variables. Three major climatic drivers were identified through the variable selection procedure: drought, water saturation and temperature. Drought decreased annual growth and mortality rates, high precipitation increased mortality rates and high temperature decreased growth. Interactions between key functional traits, stature and climatic variables were investigated, showing best resistance to drought for trees with high wood density and for trees with small current diameters. Our results highlighted strong long-term impacts of climate variables on tropical forest dynamics, suggesting potential deep impacts of climate changes during the next century. © Author(s) 2015.  
  Address Remote Sensing Division, National Institute for Space Research-INPE, São José dos Campos, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 631  
Permanent link to this record
 

 
Author Clair, B.; Arinero, R.; Leveque, G.; Ramonda, M.; Thibaut, B. openurl 
  Title (up) Imaging the mechanical properties of wood cell wall layers by atomic force modulation microscopy Type Journal Article
  Year 2003 Publication IAWA Journal Abbreviated Journal IAWA J.  
  Volume 24 Issue 3 Pages 223-230  
  Keywords wood; cell wall; mechanical properties; elastic modulus; tension wood  
  Abstract Atomic Force Microscopy in force modulation mode was used to study the elastic properties of the different fibre wall layers of the tension wood of holm oak and normal wood of boco. The method is based on the measurement of the resonance frequency of the microscope lever in contact with the sample. This frequency is related to the reduced Young modulus E* = E/(1-nu(2)) of the material, supposed to be isotropic. 'Elastic' images of the cell are obtained simultaneously with the topographic images, which allows the observation of the mechanical properties of the cells at a nanometric scale. Layers G, S-1, S-2 and ML can clearly be distinguished. By comparison with known materials an estimation of the absolute modulus is given in the range 5-20 GPa, but should be considered with caution, because the inherent anisotropy of the materials has not been taken into account.  
  Address Univ Montpellier 2, CNRS, UMR 5508, Lab Mecan & Genie Civil, F-34095 Montpellier, France  
  Corporate Author Thesis  
  Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-1541 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000185049700003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 270  
Permanent link to this record
 

 
Author Van Langenhove, Leandro ; Depaepe, Thomas ; Verryckt, Lore T. ; Vallicrosa, Helena ; Fuchslueger, Lucia ; Lugli, Laynara F. ; Bréchet, Laëtitia M. ; Ogaya, Roma ; Llusia, Joan ; Urbina, Ifigenia ; Gargallo-Garriga, Albert ; Grau, Oriol ; Richter, Andreas ; Penuelas, Josep ; Van Der Straeten, Dominique ; August Janssens, Ivan A. doi  openurl
  Title (up) Impact of Nutrient Additions on Free-Living Nitrogen Fixation in Litter and Soil of Two French-Guianese Lowland Tropical Forests Type Journal Article
  Year 2021 Publication JGR Biogeosciences Abbreviated Journal  
  Volume 126 Issue 7 Pages e2020JG006023  
  Keywords  
  Abstract In tropical forests, free-living Biological nitrogen (N) fixation (BNF) in soil and litter tends to decrease when substrate N concentrations increase, whereas increasing phosphorus (P) and molybdenum (Mo) soil and litter concentrations have been shown to stimulate free-living BNF rates. Yet, very few studies explored the effects of adding N, P, and Mo together in a single large-scale fertilization experiment, which would teach us which of these elements constrain or limit BNF activities. At two distinct forest sites in French Guiana, we performed a 3-year in situ nutrient addition study to explore the effects of N, P, and Mo additions on leaf litter and soil BNF. Additionally, we conducted a short-term laboratory study with the same nutrient addition treatments (+N, +N+P, +P, +Mo, and +P+Mo). We found that N additions alone suppressed litter free-living BNF in the field, but not in the short-term laboratory study, while litter free-living BNF remained unchanged in response to N+P additions. Additionally, we found that P and P+Mo additions stimulated BNF in leaf litter, both in the field and in the lab, while Mo alone yielded no changes. Soil BNF increased with P and P+Mo additions in only one of the field sites, while in the other site soil BNF increased with Mo and P+Mo additions. We concluded that increased substrate N concentrations suppress BNF. Moreover, both P and Mo have the potential to limit free-living BNF in these tropical forests, but the balance between P versus Mo limitation is determined by site-specific characteristics of nutrient supply and demand.  
  Address  
  Corporate Author Thesis  
  Publisher American Geophysical Union Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1040  
Permanent link to this record
 

 
Author Cohen, M.C.L.; Behling, H.; Lara, R.J.; Smith, C.B.; Matos, H.R.S.; Vedel, V. openurl 
  Title (up) Impact of sea-level and climatic changes on the Amazon coastal wetlands during the late Holocene Type Journal Article
  Year 2009 Publication Vegetation History and Archaeobotany Abbreviated Journal Veg. Hist. Archaeobot.  
  Volume 18 Issue 6 Pages 425-439  
  Keywords Mangrove; Marajo Island; Pollen analysis; Sea-level  
  Abstract Wetland dynamics in northern Brazil during the Holocene were studied by pollen analysis and AMS radiocarbon dating of three cores. Near the Amazon mouth region, covered mainly by primary Amazon coastal forest and herbaceous vegetation, the pollen record indicates the dominance of mangroves between 4800 and 1100 cal yr B.P. A contraction of the mangrove area and an expansion of herbaceous and fern vegetation occurred between 1100 and 750 cal yr B.P. The period between 750 and 200 cal yr B.P. is characterized by an expansion of mangrove and a decrease in herbaceous and fern vegetation. This trend continued until the present. On Atalaia Island, the sediment core indicates a period with poor pollen preservation between 830 and 630 cal yr B.P. Between 630 and 330 cal yr B.P., mangroves expanded. Later, up to 45 cal yr B.P., the mangrove area decreased and the herbaceous vegetation expanded. During the last hundred years, the relative sea-level rise most probably favored the mangrove expansion as far as the topographically highest sector on this island, while the herbaceous vegetation decreased. The pollen data from Agua Preta Lake indicate dry conditions, as reflected by the poor pollen preservation between 390 and 240 cal yr B.P. Between 240 and 60 cal yr B.P., restinga and Amazon coastal forest with palms dominated this region. For the last 120 years, the record indicates an expansion of the mangrove area. However, recent confinement of mangrove development to the topographically highest area, and the loss of mangrove areas on the lowest surfaces have led to a net loss of mangrove coverage during the last decades.  
  Address [Lisboa Cohen, Marcelo Cancela; Smith, Clarisse Beltrao; Soares Matos, Hellen Rosy] Fed Univ Para, Postgrad Program Geol & Geochem, Lab Coastal Dynam, BR-66077530 Belem, PA, Brazil, Email: mcohen@ufpa.br  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0939-6314 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000271191800001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 193  
Permanent link to this record
 

 
Author Degen, B.; Blanc, L.; Caron, H.; Maggia, L.; Kremer, A.; Gourlet-Fleury, S. openurl 
  Title (up) Impact of selective logging on genetic composition and demographic structure of four tropical tree species Type Journal Article
  Year 2006 Publication Biological Conservation Abbreviated Journal Biol. Conserv.  
  Volume 131 Issue 3 Pages 386-401  
  Keywords demography; genetic diversity; logging; phenology; pollen and seed dispersal; simulation; trees; tropics  
  Abstract Over-exploitation and fragmentation are serious problems for tropical forests. Most sustainable forest management practices avoid clear-cuts and apply selective logging systems focused on a few commercial species. We applied a simulation model to estimate the impact of such selective logging scenarios on the genetic diversity and demography of four tropical tree species from French Guiana. The simulations used data on genetic and demographic composition, growth, phenology and pollen and seed dispersal obtained for Dicorynia guianensis, Sextonia rubra, Symphonia globulifera and Vouacapoua americana at the experimental site in Paracou. Whereas Symphonia globulifera serves as a model for a species with low logging pressure, the other three species represent the most exploited tree species in French Guiana. In simulations with moderate logging, typical for French Guiana, with large cutting diameter (> 60 cm diameter) and long cutting cycles (65 years), the two species V. americana and Sextonia rubra were not able to recover their initial stock at the end of the rotation period, with a large decrease in the number of individuals and in basal area. Under a more intensive logging system (cutting diameter > 45 cm diameter, cutting cycles of 30 years) that is common practice in the Brazilian Amazon, only Symphonia globulifera showed no negative impact. Generally, the differences between the genetic parameters in the control scenarios without logging and the logging scenarios were surprisingly small. The main reasons for this were the overlapping of generations and the effective dispersal ability of gene vectors in all species, which guarantee relative homogeneity of the genetic structure in different age classes. Nevertheless, decreasing the population size by logging reduced the number of genotypes and caused higher genetic distances between the original population and the population at the end of the logging cycles. Sensitivity analysis showed that genetic changes in the logging scenarios were principally determined by the growth, densities and cutting diameter of each species, and only to a very small extent by the reproductive system including factors such as pollen and seed dispersal and flowering phenology. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address BFH, Inst Forstgenet & Forstpflanzenzuchtung, D-22927 Grosshansdorf, Germany, Email: b.degen@holz.uni-hamburg.de  
  Corporate Author Thesis  
  Publisher ELSEVIER SCI LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000239139400004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 180  
Permanent link to this record
 

 
Author Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guehl, J.M.; Granier, A. openurl 
  Title (up) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2008 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 14 Issue 8 Pages 1917-1933  
  Keywords dry season; ecosystem respiration; eddy covariance; gross ecosystem productivity; Neotropical rainforest; net ecosystem productivity; soil drought; solar radiation  
  Abstract The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (R-Ed) and daily gross ecosystem productivity (GEP(d)), were estimated over 2 years at a flux tower site in French Guiana, South America (5 degrees 16'54'N, 52 degrees 54'44'W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93-day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m(-2)). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower R-Ed combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m(-2). Severe drought conditions resulted in even lower R-Ed, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m(-2)), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  
  Address [Bonal, Damien; Goret, Jean-Yves; Burban, Benoit] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: damien.bonal@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257712400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 133  
Permanent link to this record
 

 
Author Bompy, F.; Imbert, D.; Dulormne, M. url  openurl
  Title (up) Impact patterns of soil salinity variations on the survival rate, growth performances, and physiology of Pterocarpus officinalis seedlings Type Journal Article
  Year 2015 Publication Trees – Structure and Function Abbreviated Journal Trees – Structure and Function  
  Volume 29 Issue 1 Pages 119-128  
  Keywords Acclimation; Leaf chemical composition; Leaf gas exchange; NaCl salinity; Tropical swamp forest; Vegetative growth  
  Abstract Key message: Pterocarpus officinalisis able to (1) improve its acclimation capacity if soil salinity increases slowly and (2) benefit from afreshwater episode.
Abstract: One likely effect of global change is an increase of the amplitude of salt variations in the soil of brackish coastal wetland forests. In the Antilles, such forests are dominated by the species Pterocarpus officinalis. The study aimed to determine the effect of 3 salinity levels (freshwater, moderate, and hypersalinity—i.e., 0, 10, and 30 ‰, respectively) and 3 patterns of salinity variation (fast or slow salinity increase, fluctuating salinity) on the growth and ecophysiology of P. officinalis seedlings. P. officinalis proved tolerant to 10 ‰ salinity, even if at this salt concentration the water constraint altered the plant’s water status and reduced stomatal conductance. No impact of the pattern of salinity variation was observed at 10 ‰. Seedlings were strongly affected by hypersalinity, but were able to acclimatize efficiently and to improve their performances (higher survival, total biomass, and photosynthesis) when salinity increased slowly. Young P. officinalis were also able to take advantage of a freshwater episode on the longer term, certainly through leaf desalination associated with enhanced photosynthesis and water use efficiency. Higher soil salinity and more intense dry seasons in the context of climate change could affect the stand-level regeneration potential of P. officinalis seedlings. © 2014, Springer-Verlag Berlin Heidelberg.
 
  Address UMR ECOFOG-DYNECAR, UFR des Sciences Exactes et Naturelles, Université des Antilles et de la Guyane, Pointe-à-PitreGuadeloupe (F.W.I.), France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 595  
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Azémar, F.; Dumont, Y.; Leroy, C. doi  openurl
  Title (up) Impacts of biotic and abiotic parameters on immature populations of Aedes aegypti Type Journal Article
  Year 2020 Publication Journal of Pest Science Abbreviated Journal J. Pest Sci.  
  Volume 93 Issue 3 Pages 941-952  
  Keywords Biocontrol agents; Competition; Ecosystem services; Mosquito control; Mosquito management; Predation; abiotic factor; biotic factor; competitive displacement; disease vector; maturation; mosquito; pest control; Aedes aegypti; Hexapoda; Zika virus  
  Abstract In recent centuries, the mosquito Aedes aegypti has spread into most urban areas throughout the tropics. This species is considered the main vector of the chikungunya, dengue, yellow fever and Zika viruses and causes major public health issues. The aim of this study is to investigate the relative influence of biotic and abiotic parameters on immature populations of Ae. aegypti. During a one-year-long field experiment, we monitored 108 macroinvertebrate aquatic communities inhabiting four types of water containers across three different urbanized sites in a Neotropical city. A multimodel inference approach revealed that, in addition to abiotic parameters, biotic interactions with aquatic organisms had an important influence on the abundance of Ae. aegypti and that the urbanized site considered influences the outcomes of the interactions. Controphic species other than mosquitoes aided Ae. aegypti development, suggesting a mechanism of facilitation through a chain of processes. However, the abundance of Ae. aegypti was lowered by competition with native mosquito species in the slightly urbanized area and by predation in more urbanized areas. Competitive displacement and reduction, as well as predation by native aquatic organisms, can be considered a form of ecosystem service. The conservation and/or augmentation of natural enemies should improve the short- and long-term success of incompatible and/or sterile insect techniques, thus opening up perspectives for the future of mosquito management. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 16124758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 962  
Permanent link to this record
 

 
Author Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; Derroire, G.; dos-Santos, M.N.; Meyer, V.; Saleska, S.; Trumbore, S.; Vincent, G. doi  openurl
  Title (up) Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.  
  Volume 125 Issue 8 Pages e2020JG005677  
  Keywords Amazon; drought; ecosystem modeling; evapotranspiration; forest degradation; remote sensing; carbon cycle; deforestation; dry season; evapotranspiration; hydrological cycle; logging (timber); net primary production; remote sensing; sensible heat flux; tropical forest; understory; water stress; Amazon River  
  Abstract Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems. ©2020. The Authors.  
  Address AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21698953 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 957  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: