|   | 
Details
   web
Records
Author Strasburg, J.L.; Scotti-Saintagne, C.; Scotti, I.; Lai, Z.; Rieseberg, L.H.
Title (up) Genomic Patterns of Adaptive Divergence between Chromosomally Differentiated Sunflower Species Type Journal Article
Year 2009 Publication Molecular Biology and Evolution Abbreviated Journal Mol. Biol. Evol.
Volume 26 Issue 6 Pages 1341-1355
Keywords species boundaries; chromosomal rearrangements; positive selection; hybridization; sunflowers; Helianthus
Abstract Understanding the genetic mechanisms of speciation and basis of species differences is among the most important challenges in evolutionary biology. Two questions of particular interest are what roles divergent selection and chromosomal differentiation play in these processes. A number of recently proposed theories argue that chromosomal rearrangements can facilitate the development and maintenance of reproductive isolation and species differences by suppressing recombination within rearranged regions. Reduced recombination permits the accumulation of alleles contributing to isolation and adaptive differentiation and protects existing differences from the homogenizing effects of introgression between incipient species. Here, we examine patterns of genetic diversity and divergence in rearranged versus collinear regions in two widespread, extensively hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris, using sequence data from 77 loci distributed throughout the genomes of the two species. We find weak evidence for increased genetic divergence near chromosomal break points but not within rearranged regions overall. We find no evidence for increased rates of adaptive divergence on rearranged chromosomes; in fact, collinear chromosomes show a far greater excess of fixed amino acid differences between the two species. A comparison with a third sunflower species indicates that much of the nonsynonymous divergence between H. annuus and H. petiolaris probably occurred during or soon after their formation. Our results suggest a limited role for chromosomal rearrangements in genetic divergence, but they do document substantial adaptive divergence and provide further evidence of how species integrity and genetic identity can be maintained at many loci in the face of extensive hybridization and gene flow.
Address [Strasburg, Jared L.; Scotti-Saintagne, Caroline; Rieseberg, Loren H.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA, Email: jstrasbu@indiana.edu
Corporate Author Thesis
Publisher OXFORD UNIV PRESS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0737-4038 ISBN Medium
Area Expedition Conference
Notes ISI:000266116500012 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 111
Permanent link to this record
 

 
Author Franklin, J.; Andrade, R.; Daniels, M.L.; Fairbairn, P.; Fandino, M.C.; Gillespie, T.W.; González, G.; Gonzalez, O.; Imbert, D.; Kapos, V.; Kelly, D.L.; Marcano-Vega, H.; Meléndez-Ackerman, E.J.; McLaren, K.P.; McDonald, M.A.; Ripplinger, J.; Rojas-Sandoval, J.; Ross, M.S.; Ruiz, J.; Steadman, D.W.; Tanner, E.V.J.; Terrill, I.; Vennetier, M.
Title (up) Geographical ecology of dry forest tree communities in the West Indies Type Journal Article
Year 2018 Publication Journal of Biogeography Abbreviated Journal J Biogeogr
Volume 45 Issue 5 Pages 1168-1181
Keywords beta diversity; Caribbean; community composition; seasonally dry tropical forest; species turnover; tropical dry forest; West Indies
Abstract Abstract Aim Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant sites would suggest communities structured by speciation and dispersal limitations. A nested pattern would be consistent with a steep resource gradient. Correlation of species composition with climatic variation would suggest communities structured by broad-scale environmental filtering. Location The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico, US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south Florida (USA) and Florida Keys (USA). Taxon Seed plants?woody taxa (primarily trees). Methods We compiled 572 plots from 23 surveys conducted between 1969 and 2016. Hierarchical clustering of species in plots, and indicator species analysis for the resulting groups of sites, identified geographical patterns of turnover in species composition. Nonparametric analysis of variance, applied to principal components of bioclimatic variables, determined the degree of covariation in climate with location. Nestedness versus turnover in species composition was evaluated using beta diversity partitioning. Generalized dissimilarity modelling partitioned the effect of climate versus geographical distance on species composition. Results Despite a set of commonly occurring species, SDTF tree community composition was distinct among islands and was characterized by spatial turnover on climatic gradients that covaried with geographical gradients. Greater Antillean islands were characterized by endemic indicator species. Northern subtropical areas supported distinct, rather than nested, SDTF communities in spite of low levels of endemism. Main conclusions The SDTF species composition was correlated with climatic variation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was characterized by endemic species, consistent with their geological history and the biogeography of plant lineages. These results suggest that both environmental filtering and speciation shape Caribbean SDTF tree communities.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-0270 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/jbi.13198 Approved no
Call Number EcoFoG @ webmaster @ Serial 846
Permanent link to this record
 

 
Author Fukami, T.; Nakajima, M.; Fortunel, C.; Fine, P.V.A.; Baraloto, C.; Russo, S.E.; Peay, K.G.
Title (up) Geographical variation in community divergence: insights from tropical forest monodominance by ectomycorrhizal trees Type Journal Article
Year 2017 Publication American Naturalist Abbreviated Journal American Naturalist
Volume 190 Issue Pages S105-S122
Keywords Community assembly; Mycorrhizae; Plant traits; Plant-soil feedback; Priority effects; Species pools
Abstract Convergence occurs in both species traits and community structure, but how convergence at the two scales influences each other remains unclear. To address this question, we focus on tropical forest monodominance, in which a single, often ectomycorrhizal (EM) tree species occasionally dominates forest stands within a landscape otherwise characterized by diverse communities of arbuscular mycorrhizal (AM) trees. Such monodominance is a striking potential example of community divergence resulting in alternative stable states. However, it is observed only in some tropical regions. A diverse suite of AM and EM trees locally codominate forest stands elsewhere. We develop a hypothesis to explain this geographical difference using a simulation model of plant community assembly. Simulation results suggest that in a region with a few EM species (e.g., South America), EM trees experience strong selection for convergent traits that match the abiotic conditions of the environment. Consequently, EM species successfully compete against other species to form monodominant stands via positive plant-soil feedbacks. By contrast, in a region with many EM species (e.g., Southeast Asia), species maintain divergent traits because of complex plant-soil feedbacks, with no species having traits that enablemonodominance. An analysis of plant trait data from Borneo and Peruvian Amazon was inconclusive. Overall, this work highlights the utility of geographical comparison in understanding the relationship between trait convergence and community convergence. © 2017 by The University of Chicago.
Address School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 761
Permanent link to this record
 

 
Author Chartier, M.; Pélozuelo, L.; Buatois, B.; Bessière, J.-M.; Gibernau, M.
Title (up) Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species Type Journal Article
Year 2013 Publication Functional Ecology Abbreviated Journal Funct. Ecol.
Volume 27 Issue 6 Pages 1367-1381
Keywords Deception; Diptera; Floral scent; Geographical mosaic; Psychodidae; Sapromyophily; Transplant experiment
Abstract Interactions between entomophilous plants and their pollinators are one of the major factors shaping the evolution of floral features. As species are distributed in more or less connected populations, they have evolved in a geographical mosaic of co-evolution were the outcome of the plant-pollinator interaction is likely to vary as a result of local adaptations. Arum italicum and Arum maculatum are two species of Araceae which deceive their fly pollinators by mimicking the odour of their oviposition sites. Whereas A. italicum is known to be pollinated by flies belonging to different families (i.e. opportunist), A. maculatum relies on only two pollinating species of the family Psychodidae throughout its European repartition area (i.e. specialist). The interannual and geographical variations of pollinators and pollinator-attractive odours were described in several populations of the two species over two consecutive years. Furthermore, local adaptation to pollinators was tested by transplanting inflorescence-bearing plants between two different sites and by recording the number and composition of the insect fauna trapped inside the inflorescences during anthesis as a measure of a fitness component. Pollinators and pollinator-attractive odours of the two Arum species varied in time and space, but there was no clear odour structure between populations. When transplanted, inflorescences of both species trapped the same composition and number of insects as native inflorescences at a given site; this indicates that pollinator composition is highly dependent on the local availability of insects. No pattern of local adaptation was found for these two species, but local pollination conditions were shown to strongly affect the degree of geographical variations of these interactions. The lack of a clear odour geographical structure might be due to high gene flow or to similar selective pressures exerted by pollinators, and the high interindividual odour variation may be linked to the deceptive strategy adopted by the two plant species. © 2013 British Ecological Society.
Address Center for Functional and Evolutive Ecology, Université Montpellier 2, 1919 route de Mende, 34293 Montpellier, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 02698463 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 29 November 2013; Source: Scopus; Coden: Fecoe; doi: 10.1111/1365-2435.12122; Language of Original Document: English; Correspondence Address: Gibernau, M.; Joint Research Unit Ecology of Guiana Forests, CNRS-UMR 8172, Campus agronomique, BP 316, Kourou cedex, 97379, France; email: marc.gibernau@ecofog.gf; References: Ackerman, J.D., Cuevas, A.A., Hof, D., Are deception-pollinated species more variable than those offering a reward? (2011) Plant Systematics and Evolution, 293, pp. 91-99; Ackerman, J.D., Meléndez-Ackerman, E.J., Salguero-Faria, J., Variation in pollinator abundance and selection on fragrance phenotypes in an epiphytic orchid (1997) American Journal of Botany, 84, pp. 1383-1390; Adams, R.P., (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, , 4th edn. Allured Publishing, Carol Stream; Albre, J., Gibernau, M., Reproductive biology of Arum italicum (Araceae) in the South of France (2008) Botanical Journal of the Linnean Society, 156, pp. 43-49; Albre, J., Quilichini, A., Gibernau, M., Pollination ecology of Arum italicum (Araceae) (2003) Botanical Journal of the Linnean Society, 141, pp. 205-214; Anderson, M.J., A new method for non-parametric multivariate analysis of variance (2001) Austral Ecology, 26, pp. 32-46; Anderson, B., Johnson, S.F., The geographic mosaic of coevolution in a plant-pollinator mutualism (2007) Evolution, 62, pp. 220-225; Angert, A.L., Bradshaw, H.D., Schemske, D.W., Using experimental evolution to investigate geographic range limits in monkey flowers (2008) Evolution, 62, pp. 2660-2675; Ayasse, M., Schiestl, F.P., Paulus, H.F., Löfstedt, C., Hannson, B., Ibarra, F., Francke, W., Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? (2000) Evolution, 54, pp. 1995-2006; Blionis, G.J., Vokou, D., Structural and functional divergence of Campanula spatulata subspecies on Mt Olympos (Greece) (2002) Plant Systematics and Evolution, 232, pp. 89-105; Boyce, P.C., Arum – a decade of change (2006) Aroideana, 29, pp. 132-137; Bradshaw, H.D., Schemske, D.W., Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers (2003) Nature, 426, pp. 176-178; Brown, M., Downs, C.T., Johnson, S.D., Covariation of flower traits and bird pollinator assemblages among pollinations of Kniphofia linearifolia (Asphodelaceae) (2011) Plant Systematics and Evolution, 294, pp. 199-206; Campbell, D.R., Natural selection in Ipomopsis hybrid zones: implications for ecological speciation (2003) New Phytologist, 161, pp. 83-90; Chartier, M., Pelozuelo, L., Gibernau, M., Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae) (2011) Annales de la Société Entomologique de France, 47, pp. 71-77; Cosacov, A., Nattero, J., Cocucci, A.A., Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia liariifolia (Solanaceae) (2008) Annals of Botany, 102, pp. 723-734; Diaz, A., Kite, G.C., A comparison of the pollination ecology of Arum maculatum and A. italicum in England (2002) Watsonia, 24, pp. 171-181; Dormont, L., Jay-Robert, P., Bessière, J.-M., Rapior, S., Lumaret, J.-P., Innate olfactory preferences in dung beetles (2010) The Journal of Experimental Biology, 213, pp. 3177-3185; Dötterl, S., Wolfe, L.M., Jürgens, A., Qualitative and quantitative analyses of flower scent in Silene latifolia (2005) Phytochemistry, 66, pp. 203-213; Elle, E., Carney, R., Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae) (2003) American Journal of Botany, 90, pp. 888-896; Ellis, A.G., Johnson, S.D., The evolution of floral variation without pollinator shifts in Gorteria diffusa (Asteraceae) (2009) American Journal of Botany, 96, pp. 793-801; Espìndola, A., Pellissier, L., Alvarez, N., Variation in the proportion of flore visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses (2011) Oikos, 120, pp. 728-734; Faegri, K., Van Der Pijl, L., (1971) The Principles of Pollination Ecology, , Pergamon Press, Oxford; Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., Thomson, J.D., Pollination syndromes and floral specialization (2004) Annual Reviews of Ecology, Evolution and Systematics, 35, pp. 375-403; Geber, M.A., Eckhart, V.M., Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border (2005) Evolution, 59, pp. 521-531; Geber, M.A., Moeller, D.A., Pollinator responses to plant communities and implications for reproductive character evolution (2006) Ecology and Evolution of Flowers, pp. 102-119. , eds L.D. Harder & S.C.H. Barrett. Oxford University Press, Oxford; Gibernau, M., (1997), Odeurs et spécificité dans les mutualismes figuier pollinisateur: Le cas de Ficus carica L. et de Blastophaga psenes L. PhD thesis, University of Montpellier, MontpellierGibernau, M., Macquart, D., Przetak, G., Pollination in the genus Arum – a review (2004) Aroideana, 27, pp. 148-166; Gomez, J.M., Bosh, J., Perfectti, F., Fernández, J.D., Abdelaziz, M., Camacho, J.P.M., Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators (2008) Proceedings of the Royal Society B, 275, pp. 2241-2249; Gomez, J.M., Abdelaziz, M., Camacho, J.P.M., Munoz-Pajares, A.J., Perfectti, F., Local adaptation and maladaptation to pollinators in a generalist geographic mosaic (2009) Ecology Letters, 12, pp. 672-682; Gould, S.J., Johnston, R.F., Geographic variation (1972) Annual Review of Ecology, Evolution, and Systematics, 3, pp. 457-498; Hentrich, H., Kaiser, R., Gottsberger, G., Floral biology and reproductive isolation by floral scent in three sympatric Aroid species in French Guyana (2010) Plant Biology, 12, pp. 587-596; Herrera, C.M., Castellanos, M.C., Medrano, M., Geographical context of floral evolution: towards an improved research programme in floral diversification (2006) Ecology and Evolution of Flowers, pp. 278-294. , eds L.D. Harder & S.C.H. Barrett) Oxford University Press, Oxford; Hodgins, K.A., Barrett, C.H., Geographic variation in floral morphology and style-morph ratios in a sexually polymorphic daffodil (2008) American Journal of Botany, 95, pp. 185-195; Ibanez, S., Dötterl, S., Anstett, M.-C., Baudino, S., Caissard, J.C., Gallet, C., Després, L., The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies (2010) New Phytologist, 188, pp. 451-463; Ježek, J., Redescriptions of nine common palaeartic and holartic species of Psychodini End. (Diptera: Psychodidae) (1990) Acta Entomologica Musei Nationalis Pragae, 43, pp. 33-83; Ježek, J., Hájek, J., Psychodidae (Diptera) of the Orlické hory protected landscape area and neighbouring areas with descriptions of two new species from the Czech Republic (2007) Acta Entomologica Musei Nationalis Pragae, 47, pp. 237-285; Johnson, S.D., Pollinator-driven speciation in plants (2006) Ecology and Evolution of Flowers, pp. 295-310. , eds L.D. Harder & S.C.H. Barrett Oxford University Press, Oxford; Johnson, S.D., Jürgens, A., Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus (2010) South African Journal of Botany, 76, pp. 796-807; Johnson, S.D., Steiner, K.E., Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae) (1997) Evolution, 51, pp. 45-53; Jürgens, A., Dötterl, S., Meve, U., The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae) (2006) New Phytologist, 172, pp. 452-468; Kato, M., Itioka, T., Sakai, S., Momose, K., Yamane, S., Hamid, A.A., Inoue, T., Various population fluctuation patterns of light-attracted beetles in a tropical lowland dipterocarp forest in Sarawak (2000) Population Ecology, 42, pp. 97-104; Kiester, A.R., Lande, R., Schemske, D.W., Models of coevolution and speciation in plants and their pollinators (1984) The American Naturalist, 1242, pp. 220-243; Kite, G.C., The floral odour of Arum maculatum (1995) Biochemical Systematics and Ecology, 23, pp. 343-354; Kite, G.C., Hetterscheid, W.L.A., Lewis, M.J., Boyce, P.C., Ollerton, J., Cocklin, E., Diaz, A., Simmonds, M.S.J., Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae) (1998) Reproductive Biology, pp. 295-315. , (eds S.J. Owens & P.J. Rudall) Royal Botanical Gardens, Kew; Knudsen, J.T., Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon (2002) American Journal of Botany, 89, pp. 1772-1778; Knudsen, J.T., Eriksson, R., Gershenzon, J., Ståhl, B., Diversity and distribution of floral scent (2006) The Botanical Review, 72, pp. 1-120; Lack, A.J., Diaz, A., The pollination of Arum maculatum L. – a historical review and new observations (1991) Watsonia, 18, pp. 333-342; Levin, D.A., (2000) The Origin, Expansion and Demise of Plant Species, , Oxford University Press, Oxford; Levin, D.A., Anderson, W.W., Competition for pollinators between simultaneously flowering species (1970) The American Naturalist, 104, pp. 455-467; Linz, J., Stökl, J., Urru, I., Krügel, T., Stensmyr, M.C., Hansson, B.S., Molecular phylogeny of the genus Arum (Araceae) inferred from multi-locus sequence data and AFLPs (2010) Taxon, 59, pp. 405-415; Maia, A.C.D., Dötterl, S., Kaiser, R., Silberbauer-Gottsberger, I., Teichert, H., Gibernau, M., Navarro, D.M.D.F., Gottsberger, G., The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae (2012) Journal of Chemical Ecology, 38, pp. 1072-1080; Maia, A.C.D., Gibernau, M., Dötterl, S., Navarro, DM., Seifert, K., Müller, T., Schlindwein, C., The floral scent of Taccarum ulei (araceae): attraction of scarab beetle pollinators to an unusual aliphatic acyloin (2013) Phytochemistry, , http://dx.doi.org/10.1016/j.phytochem.2013.03.005, (in press); Mant, J., Peakall, R., Schiestl, F.P., Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys? (2005) Evolution, 59, pp. 1449-1463; Méndez, M., Obeso, J.R., Influencia del osmoforo en la produccion de infrutescencias en Arum italicum Miller (Araceae) (1992) Anales del Jardín Botánico de Madrid, 50, pp. 229-237; Mitchell, R.J., Flanagan, R.J., Brown, B.J., Waser, N.M., Karron, J.D., New frontiers in competition for pollination (2009) Annals of Botany, 103, pp. 1403-1413; Morgan, M.T., Selection on reproductive characters: conceptual foundations and their extension to pollinator interactions (2006) Ecology and Evolution of Flowers, pp. 25-40. , eds L.D. Harder & S.C.H. Barrett) Oxford University Press, Oxford; Nattero, J., Cocussi, A.A., Medel, R., Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations (2010) Journal of Evolutionary Biology, 23, pp. 1957-1968; Pettersson, S., Knudsen, J.T., Floral scent and nectar production in Parkia biglobosa Jacq. (Leguminosae: Mimosoideae) (2001) Botanical Journal of the Linnean Society, 135, pp. 97-106; Pichersky, E., Gershenzon, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense (2002) Plant Biology, 5, pp. 237-243; Prime, C.T., (1960) Lords and Ladies, , Harper Collins Publishers, London; Proctor, M., Leo, P., Lack, A., (1996) Natural History of Pollination, , Harper Collins Publishers, London; Raguso, R.A., Wake up and smell the roses: the ecology and evolution of floral scent (2008) Annual Review of Ecology, Evolution, and Systematics, 39, pp. 549-569; (2012) R: A language and environment for statistical computing, , http://www.R-project.org/, R Core Team R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL University of Chicago Press, Chicago, IL; Renner, S.S., Rewardless flowers in the Angiosperms and the role of insect cognition in their evolution (2006) Plant-Pollinator Interactions: From Specialization to Generalization, pp. 123-144. , eds N.M. Waser & J. Ollerton University of Chicago Press, Chicago, IL; Rohacek, J., Beck-Haug, I., Dobat, K., Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (1990) Senckenbergiana biologie, 71, pp. 259-268; Schaeffer, H.M., Ruxton, G.D., (2011) Plant-Animal Communication, , Oxford University Press, Oxford; Schiestl, F.P., Ayasse, M., Do changes in floral odor cause speciation in sexually deceptive orchids? (2002) Plant Systematics and Evolution, 234, pp. 111-119; Schiestl, F.P., Schlüter, P.M., Floral isolation, specialized pollination, and pollinator behavior in Orchids (2009) Annual Review of Entomology, 54, pp. 425-446; Schlumpberger, B.O., Raguso, R.A., Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction (2008) Oikos, 117, pp. 801-814; Schlumpberger, B.O., Cocussi, A.A., Moré, M., Sérsic, A.N., Raguso, R.A., Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus (2009) Annals of Botany, 103, pp. 1489-1500; Solers, C., Hossaert-McKey, M., Buatois, B., Bessière, J.-M., Schatz, B., Proffit, M., Geographic variation of floral scent in a highly specialized pollination mutualism (2011) Phytochemistry, 72, pp. 74-81; Stebbins, G.L., Adaptive radiation of reproductive characteristics in Angiosperms, I: pollination mechanisms (1970) Annual Review of Ecology and Systematics, 1, pp. 307-326; Stökl, J., Strutz, A., Dafni, A., Svatos, A., Doubsky, J., Knaden, M., Sachse, S., Stensmyr, M.C., A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast (2010) Current Biology, 20, pp. 1846-1852; Stökl, J., Schlüter, P.M., Stuessy, T.F., Paulus, H.F., Assum, G., Ayasse, M., Scent variation and hybridization cause the displacement of a sexually deceptive orchid species (2008) American Journal of Botany, 95, pp. 472-481; Svensson, G.P., Pellmyr, O., Raguso, R.A., Strong conservation of floral scent composition in two allopatric yuccas (2006) Journal of Chemical Ecology, 32, pp. 2657-2665; Svensson, G.P., Pellmyr, O., Raguso, R.A., Pollinator attraction to volatiles from virgin and pollinated host flowers in a yucca/moth obligate mutualism (2011) Oikos, 120, pp. 1577-1583; Svensson, G.P., Hickman, M.O., Bartram, S., Boland, W., Pellmyr, O., Raguso, R.A., Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae) (2005) American Journal of Botany, 92, pp. 1624-1631; Thompson, J.N., (2005) The Geographic Mosaic of Coevolution, , University Chicago Press, Chicago, IL; Urru, I., Stensmyr, M.C., Hansson, B.S., Pollination by brood-site deception (2011) Phytochemistry, 72, pp. 1655-1666; Vaillant, F., Diptères psychodidae coprophiles et coprobiontes d'Europe (1988) Bulletin Romand d'Entomologie, 6, pp. 1-43; Valiente-Banuet, A., Molina-Freaner, F., Torres, A., del Coro Arizmendi, M., Casas, A., Geographic differentiation in the pollination system of the columnar cactus Pachycereus pecten-aboriginum (2004) American Journal of Botany, 91, pp. 850-855; Volis, S., Adaptive genetic differentiation in a predominantly self-pollinating species analyzed by transplanting into natural environment, crossbreeding and Qst-Fst test (2011) New Phytologist, 192, pp. 237-248; Waelti, M.O., Muhlemann, J.K., Widmer, A., Schiestl, F.P., Floral odour and reproductive isolation in two species of Silene (2008) Journal of Evolutionary Biology, 21, pp. 111-121; Waser, N.M., Interspecific pollen transfer and competition between co-occurring plant species (1978) Oecologia, 36, pp. 223-236; Waterman, R.J., Bidartondo, M.I., Stofberg, J., Combs, J.K., Gebauer, G., Savolainen, V., Barraclough, T.G., Pauw, A., The effects of above- and belowground mutualisms on orchid speciation and coexistence (2011) The American Naturalist, 177, pp. E54-E68; Withers, P., Roth flies. Diptera: Psychodidae (1989) Dipterist Digest, 4, pp. 1-83 Approved no
Call Number EcoFoG @ webmaster @ Serial 511
Permanent link to this record
 

 
Author Guitet, S.; Pélissier, R.; Brunaux, O.; Jaouen, G.; Sabatier, D.
Title (up) Geomorphological landscape features explain floristic patterns in French Guiana rainforest Type Journal Article
Year 2015 Publication Biodiversity and Conservation Abbreviated Journal Biodiversity and Conservation
Volume 24 Issue 5 Pages 1215-1237
Keywords Geodiversity; Geomorphology; Landscapes; Species distribution; Tree community
Abstract Geomorphic landscape features have been suggested as indicators of forest diversity. However, their explanatory power has not yet been explicitly tested at a regional scale in tropical rainforest. We used forest inventories conducted according to a stratified sampling design (3,132 plots in 111 transects at 33 sites) and holistic multi-scale geomorphological mapping derived from a Shuttle Radar Topography Mission digital elevation model to describe and explain spatial patterns in floristic composition across French Guiana (80,000 km2). We measured and identified 123,906 trees with DBH ≥20 cm and used constrained and unconstrained ordinations to analyze variations in the abundance of 221 taxa and 51 families. Variance partitioning and variograms were used to detect spatial patterns in species composition, compare the explanatory power of spatial and environmental factors, and select the variables that best explain forest composition. Strong floristic patterns corresponded to a major latitudinal gradient and significant sub-regional floristic structure. Geomorphological landscapes shaped by historic climate fluctuations and major geological events successfully captured these patterns and explained the variation in abundance of 80 taxa, corresponding to 65 % of the inventoried trees. Our findings suggest that long-term forest dynamics are under substantial “geomorphographic control”. A geomorphological perspective on landscapes that incorporates current and past environmental filters and historical biogeographical processes could thus be used more systematically in tropical regions for regional planning and forest conservation. © 2014, Springer Science+Business Media Dordrecht.
Address UMR EcoFoG, AgroParisTech, Campus agronomique, Guyane Française, BP 316, Kourou, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 8 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 620
Permanent link to this record
 

 
Author Thomas, H.J.D.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Kattge, J.; Diaz, S.; Vellend, M.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; Henry, G.H.R.; Hollister, R.D.; Normand, S.; Prevéy, J.S.; Rixen, C.; Schaepman-Strub, G.; Wilmking, M.; Wipf, S.; Cornwell, W.K.; Beck, P.S.A.; Georges, D.; Goetz, S.J.; Guay, K.C.; Rüger, N.; Soudzilovskaia, N.A.; Spasojevic, M.J.; Alatalo, J.M.; Alexander, H.D.; Anadon-Rosell, A.; Angers-Blondin, S.; te Beest, M.; Berner, L.T.; Björk, R.G.; Buchwal, A.; Buras, A.; Carbognani, M.; Christie, K.S.; Collier, L.S.; Cooper, E.J.; Elberling, B.; Eskelinen, A.; Frei, E.R.; Grau, O.; Grogan, P.; Hallinger, M.; Heijmans, M.M.P.D.; Hermanutz, L.; Hudson, J.M.G.; Johnstone, J.F.; Hülber, K.; Iturrate-Garcia, M.; Iversen, C.M.; Jaroszynska, F.; Kaarlejarvi, E.; Kulonen, A.; Lamarque, L.J.; Lantz, T.C.; Lévesque, E.; Little, C.J.; Michelsen, A.; Milbau, A.; Nabe-Nielsen, J.; Nielsen, S.S.; Ninot, J.M.; Oberbauer, S.F.; Olofsson, J.; Onipchenko, V.G.; Petraglia, A.; Rumpf, S.B.; Shetti, R.; Speed, J.D.M.; Suding, K.N.; Tape, K.D.; Tomaselli, M.; Trant, A.J.; Treier, U.A.; Tremblay, M.; Venn, S.E.; Vowles, T.; Weijers, S.; Wookey, P.A.; Zamin, T.J.; Bahn, M.; Blonder, B.; van Bodegom, P.M.; Bond-Lamberty, B.; Campetella, G.; Cerabolini, B.E.L.; Chapin, F.S., III; Craine, J.M.; Dainese, M.; Green, W.A.; Jansen, S.; Kleyer, M.; Manning, P.; Niinemets, Ü.; Onoda, Y.; Ozinga, W.A.; Peñuelas, J.; Poschlod, P.; Reich, P.B.; Sandel, B.; Schamp, B.S.; Sheremetiev, S.N.; de Vries, F.T.
Title (up) Global plant trait relationships extend to the climatic extremes of the tundra biome Type Journal Article
Year 2020 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 11 Issue 1351 Pages
Keywords biome; climate change; extreme event; global change; growth; interspecific interaction; plant community; tundra; article; plant community; prediction; tundra; warming; classification; climate; ecosystem; genetics; plant; plant development; Climate; Ecosystem; Plant Development; Plants; Tundra
Abstract The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world. © 2020, Crown.
Address Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, Amsterdam, 1090 GE, Netherlands
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20411723 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 947
Permanent link to this record
 

 
Author Öpik, M.; Zobel, M.; Cantero, J.J.; Davison, J.; Facelli, J.M.; Hiiesalu, I.; Jairus, T.; Kalwij, J.M.; Koorem, K.; Leal, M.E.; Liira, J.; Metsis, M.; Neshataeva, V.; Paal, J.; Phosri, C.; Põlme, S.; Reier, Ü.; Saks, Ü.; Schimann, H.; Thiéry, O.; Vasar, M.; Moora, M.
Title (up) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi Type Journal Article
Year 2013 Publication Mycorrhiza Abbreviated Journal
Volume 23 Issue 5 Pages 411-430
Keywords 454-sequencing; Biogeography; Database; Diversity; Fungal macroecology; Glomeromycota
Abstract We aimed to enhance understanding of the molecular diversity of arbuscular mycorrhizal fungi (AMF) by building a new global dataset targeting previously unstudied geographical areas. In total, we sampled 96 plant species from 25 sites that encompassed all continents except Antarctica. AMF in plant roots were detected by sequencing the nuclear SSU rRNA gene fragment using either cloning followed by Sanger sequencing or 454-sequencing. A total of 204 AMF phylogroups (virtual taxa, VT) were recorded, increasing the described number of Glomeromycota VT from 308 to 341 globally. Novel VT were detected from 21 sites; three novel but nevertheless widespread VT (Glomus spp. MO-G52, MO-G53, MO-G57) were recorded from six continents. The largest increases in regional VT number were recorded in previously little-studied Oceania and in the boreal and polar climatic zones – this study providing the first molecular data from the latter. Ordination revealed differences in AM fungal communities between different continents and climatic zones, suggesting that both biogeographic history and environmental conditions underlie the global variation of those communities. Our results show that a considerable proportion of Glomeromycota diversity has been recorded in many regions, though further large increases in richness can be expected in remaining unstudied areas. © 2013 Springer-Verlag Berlin Heidelberg.
Address INRA-Joint Research Unit Ecology of Guiana Forests (Ecofog), campus agronomique, BP 709, 97387 Kourou cedex, French Guiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 25 June 2013; Source: Scopus Approved no
Call Number EcoFoG @ webmaster @ Serial 493
Permanent link to this record
 

 
Author Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; Kattge, J.; Pillar, V.D.; Schrodt, F.; Mahecha, M.D.; Peet, R.K.; Sandel, B.; van Bodegom, P.; Altman, J.; Alvarez-Dávila, E.; Arfin Khan, M.A.S.; Attorre, F.; Aubin, I.; Baraloto, C.; Barroso, J.G.; Bauters, M.; Bergmeier, E.; Biurrun, I.; Bjorkman, A.D.; Blonder, B.; Čarni, A.; Cayuela, L.; Černý, T.; Cornelissen, J.H.C.; Craven, D.; Dainese, M.; Derroire, G.; De Sanctis, M.; Díaz, S.; Doležal, J.; Farfan-Rios, W.; Feldpausch, T.R.; Fenton, N.J.; Garnier, E.; Guerin, G.R.; Gutiérrez, A.G.; Haider, S.; Hattab, T.; Henry, G.; Hérault, B.; Higuchi, P.; Hölzel, N.; Homeier, J.; Jentsch, A.; Jürgens, N.; Kącki, Z.; Karger, D.N.; Kessler, M.; Kleyer, M.; Knollová, I.; Korolyuk, A.Y.; Kühn, I.; Laughlin, D.C.; Lens, F.; Loos, J.; Louault, F.; Lyubenova, M.I.; Malhi, Y.; Marcenò, C.; Mencuccini, M.; Müller, J.V.; Munzinger, J.; Myers-Smith, I.H.; Neill, D.A.; Niinemets, Ü.; Orwin, K.H.; Ozinga, W.A.; Penuelas, J.; Pérez-Haase, A.; Petřík, P.; Phillips, O.L.; Pärtel, M.; Reich, P.B.; Römermann, C.; Rodrigues, A.V.; Sabatini, F.M.; Sardans, J.; Schmidt, M.; Seidler, G.; Silva Espejo, J.E.; Silveira, M.; Smyth, A.; Sporbert, M.; Svenning, J.-C.; Tang, Z.; Thomas, R.; Tsiripidis, I.; Vassilev, K.; Violle, C.; Virtanen, R.; Weiher, E.; Welk, E.; Wesche, K.; Winter, M.; Wirth, C.; Jandt, U.
Title (up) Global trait–environment relationships of plant communities Type Journal Article
Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal
Volume 2 Issue 12 Pages 1906-1917
Keywords
Abstract Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-334x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Bruelheide2018 Serial 844
Permanent link to this record
 

 
Author Poyatos, Rafael ; Granda, Victor ; Flo, Victor ; Adams, Mark A. ; Adorjan, Balazs ; Aguadé, David ; Aidar, Marcos P.M. ; Allen, Scott ; Alvarado-Barrientos, M.Susana ; Anderson-Teixeira, Kristina J. ; Aparecido, Luiza Maria ; Arain, M. Altaf ; Aranda, Ismael ; Asbjornsen, Heidi ; Baxter, Robert
Title (up) Global transpiration data from sap flow measurements: the SAPFLUXNET database Type Journal Article
Year 2021 Publication Earth System Science Data Abbreviated Journal
Volume 13 Issue 6 Pages 2607–2649
Keywords
Abstract Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.
Address
Corporate Author Thesis
Publisher COPERNICUS PUBLICATIONS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1058
Permanent link to this record
 

 
Author Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Baruffol, M.; Bourland, N.; Bruelheide, H.; Daïnou, K.; de Gouvenain, R.C.; Doucet, J.-L.; Doust, S.; Fine, P.V.A.; Fortunel, C.; Haase, J.; Holl, K.D.; Jactel, H.; Li, X.; Kitajima, K.; Koricheva, J.; Martínez-Garza, C.; Messier, C.; Paquette, A.; Philipson, C.; Piotto, D.; Poorter, L.; Posada, J.M.; Potvin, C.; Rainio, K.; Russo, S.E.; Ruiz-Jaen, M.; Scherer-Lorenzen, M.; Webb, C.O.; Wright, S.J.; Zahawi, R.A.; Hector, A.
Title (up) Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why Type Journal Article
Year 2015 Publication Journal of Ecology Abbreviated Journal Journal of Ecology
Volume 103 Issue 4 Pages 978-989
Keywords Functional ecology; FunDivEurope; Growth; Hierarchical models; Plant population and community dynamics; Relative growth rate; Size-standardized growth rate; TreeDivNet
Abstract Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society.
Address Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 3 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 609
Permanent link to this record