toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Donald, J.; Maxfield, P.; Leroy, C.; Ellwood, M.D.F. doi  openurl
  Title (down) Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition Type Journal Article
  Year 2020 Publication Acta Oecologica Abbreviated Journal Acta Oecol.  
  Volume 106 Issue Pages  
  Keywords Asplenium; Bacteria; Borneo; Bromeliaceae; Canopy; French Guiana; Fungi; Plfa; Rainforest; bacterium; community composition; epiphyte; fungus; microbial community; niche; relative abundance; soil microorganism; species diversity; tropical forest; Amazonia; Borneo; Danum Valley; East Malaysia; French Guiana; Malaysia; Nouragues; Sabah; Asplenium; Asplenium nidus; Aves; Bacteria (microorganisms); Bromeliaceae; Fungi  
  Abstract Microbial organisms support the high species diversity associated with tropical forests, and likely drive functional processes, but microorganisms found in rainforest canopies are not well understood. We quantified the microbial diversity of suspended soils from two classical epiphytic model systems (bromeliads & bird's nest ferns) across two localities: the Nouragues Reserve in French Guiana and Danum Valley in Malaysian Borneo. Non-epiphytic suspended soils were also collected as controls at the Nouragues Reserve. Effects of epiphyte type and sample location on microbial community composition were determined using Phospholipid Fatty Acid (PLFA) analysis. Total microbial biomass remained constant across the suspended soil types, but PLFA peaks denoting the relative abundance of different microbes varied between bromeliads, bird's nest ferns and non-epiphytic control soils. Suspended soils associated with bird's nest ferns from Borneo contained a microbial community significantly different in composition from those of congeneric bird's nest ferns from Amazonia, due to shifts in the relative abundance of fungi and bacteria. Our findings reveal that epiphytes create convergent niches for microorganisms in tropical canopies, while highlighting the sensitive nature of suspended soil microbial communities. © 2020 Elsevier Masson SAS  
  Address 20 Baily Place, Cheswick, Bristol, BS16 1BG, United Kingdom  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1146609x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 959  
Permanent link to this record
 

 
Author Urbina, I.; Grau, O.; Sardans, J.; Ninot, J.M.; Peñuelas, J. doi  openurl
  Title (down) Encroachment of shrubs into subalpine grasslands in the Pyrenees changes the plant-soil stoichiometry spectrum Type Journal Article
  Year 2020 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume 448 Issue 1-2 Pages 37-53  
  Keywords Nutrient stocks; Plant strategy; Plant-soil stoichiometry; Shrub encroachment; Subalpine grassland succession; aboveground biomass; biogeochemical cycle; carbon sequestration; ectomycorrhiza; fungus; grass; nitrogen; nutrient uptake; shrub; soil-vegetation interaction; stoichiometry; subalpine environment; succession; Europe; Pyrenees; Fungi  
  Abstract Aims: Shrub encroachment has been reported over a large proportion of the subalpine grasslands across Europe and is expected to have an important impact on the biogeochemical cycle of these ecosystems. We investigated the stoichiometric changes in the plant-soil system along the succession (e.g. increase in encroachment from unencroached grassland to mature shrubland) at two contrasting sites in the Pyrenees. Methods: We analyzed the chemical composition (C, N,15N, P, K, Ca, Mg and Fe) in the soil and in the aboveground plant compartments (leaves, leaf-litter and stems) of the main herbaceous species and shrubs at three contrasting stages of the succession: unencroached grassland, young shrubland and mature shrubland. Results: The plant-soil stoichiometry spectrum differed between the successional stages. Shrub encroachment generally increased the concentration of C and Ca and the C:N ratio and often reduced to concentrations of N, P and K in the leaves and leaf-litter, while several soil nutrient concentrations (N, P, K Ca and Mg) decreased. The stocks of C, N, P, Ca, and Mg in the total aboveground biomass increased with encroachment. Conclusions: Shrub encroachment favored the dominance of long-lived species with low concentrations of N and P in the plant-soil compartments, high C:nutrient ratios in the aboveground biomass and increase the uptake of N through ericoid or ectomycorrhizal fungi. We highlight the role of shrubs in the sequestration of C and nutrients through the allocation to the aboveground biomass. The changes in plant-soil elemental composition and stocks suggest a slowdown of the biogeochemical cycles in the subalpine mountain areas where shrub encroachment occurred. © 2020, Springer Nature Switzerland AG.  
  Address Biodiversity Research Institute (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032079x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 983  
Permanent link to this record
 

 
Author Baudrimont, M.; Arini, A.; Guégan, C.; Venel, Z.; Gigault, J.; Pedrono, B.; Prunier, J.; Maurice, L.; Ter Halle, A.; Feurtet-Mazel, A. url  doi
openurl 
  Title (down) Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves) Type Journal Article
  Year 2020 Publication Environmental Science and Pollution Research Abbreviated Journal Environ. Sci. Pollut. Res.  
  Volume 27 Issue 4 Pages 3746-3755  
  Keywords Cordicula fluminea; Ecotoxicity; Nanoplastics; Polyethylene; Scenedesmus subspicatus; Thalassiosira weissiflogii; bivalve; concentration (composition); ecotoxicology; filter feeder; gyre; microalga; nanoparticle; plastic waste; pollution exposure; polymer; Atlantic Ocean; Atlantic Ocean (North); Bivalvia; Chlorophyta; Corbicula fluminea; Desmodesmus subspicatus; Nitzschia alba; Thalassiosira  
  Abstract Each year, 5 to 10 million tons of plastic waste is dumped in the oceans via freshwaters and accumulated in huge oceanic gyres. Under the effect of several abiotic factors, macro plastic wastes (or plastic wastes with macro sizes) are fractionated into microplastics (MP) and finally reach the nanometric size (nanoplastic NP). To reveal potential toxic impacts of these NPs, two microalgae, Scenedemus subspicatus (freshwater green algae), and Thalassiosira weissiflogii (marine diatom) were exposed for up to 48 h at 1, 10, 100, 1000, and 10,000 μg/L to reference polyethylene NPs (PER) or NPs made from polyethylene collected in the North Atlantic gyre (PEN, 7th continent expedition in 2015). Freshwater filter-feeding bivalves, Corbicula fluminea, were exposed to 1000 μg/L of PER and PEN for 48 h to study a possible modification of their filtration or digestion capacity. The results show that PER and PEN do not influence the cell growth of T. weissiflogii, but the PEN exposure causes growth inhibition of S. subspicatus for all exposure concentrations tested. This growth inhibition is enhanced for a higher concentration of PER or PEN (10,000 μg/L) in S. subspicatus. The marine diatom T. weissiflogii appears to be less impacted by plastic pollution than the green algae S. subspicatus for the exposure time. Exposure to NPs does not lead to any alteration of bivalve filtration; however, fecal and pseudo-fecal production increased after PEN exposure, suggesting the implementation of rejection mechanisms for inedible particles. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address UMR IMRCP 5623, Université Paul Sabatier, CNRS, 118, route de Narbonne, Toulouse, 31062, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09441344 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 23 March 2020; Coden: Esple; Correspondence Address: Baudrimont, M.; UMR EPOC 5805, Université de Bordeaux—CNRS, Place du Dr Peyneau, France; email: magalie.baudrimont@u-bordeaux.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 925  
Permanent link to this record
 

 
Author Srivastava, D.S.; Céréghino, R.; Trzcinski, M.K.; MacDonald, A.A.M.; Marino, N.A.C.; Mercado, D.A.; Leroy, C.; Corbara, B.; Romero, G.Q.; Farjalla, V.F.; Barberis, I.M.; Dézerald, O.; Hammill, E.; Atwood, T.B.; Piccoli, G.C.O.; Ospina-Bautista, F.; Carrias, J.-F.; Leal, J.S.; Montero, G.; Antiqueira, P.A.P.; Freire, R.; Realpe, E.; Amundrud, S.L.; de Omena, P.M.; Campos, A.B.A. doi  openurl
  Title (down) Ecological response to altered rainfall differs across the Neotropics Type Journal Article
  Year 2020 Publication Ecology Abbreviated Journal Ecology  
  Volume 101 Issue 4 Pages e02984  
  Keywords contingency; distributed experiment; freshwater; global change biology; macroinvertebrates; phytotelmata; precipitation; aquatic ecosystem; climate change; climate conditions; ecosystem response; extreme event; functional group; invertebrate; Neotropical Region; rainfall; species pool; Bacteria (microorganisms); Invertebrata; rain; animal; climate change; drought; ecosystem; invertebrate; Animals; Climate Change; Droughts; Ecosystem; Invertebrates; Rain  
  Abstract There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of “safe ecosystem functioning” when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition. © 2020 by the Ecological Society of America  
  Address Departamento de Ciencias Biológicas, Universidad de Caldas, Caldas, 170001, Colombia  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00129658 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 979  
Permanent link to this record
 

 
Author Céréghino, R.; Corbara, B.; Leroy, C.; Carrias, J.-F. doi  openurl
  Title (down) Ecological determinants of community structure across the trophic levels of freshwater food webs: a test using bromeliad phytotelmata Type Journal Article
  Year 2020 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume 847 Issue 2 Pages 391-402  
  Keywords Environmental filtering; Functional group; Neotropical; Niche; Trophic interactions; alga; assembly rule; bacterium; community structure; ecological modeling; environmental conditions; food web; freshwater ecosystem; functional group; Neotropic Ecozone; niche; protozoan; taxonomy; trophic interaction; trophic level; algae; Invertebrata; Protozoa  
  Abstract Understanding the relative importance of habitat and biotic drivers on community assembly across food web components is an important step towards predicting the consequences of environmental changes. Because documenting entire food webs is often impractical, this question has been only partially investigated. Here, we partitioned variation in species assemblages of the major components of tank bromeliad food webs (bacteria, algae, protozoans, detritivorous and predatory invertebrates) into habitat and biotic determinants and examined the influence of habitat variables and predator or prey abundance on all taxonomic assemblages. Ecological determinism of assemblage structure ranged from weak in bacteria (< 10% of the explained variance) to strong in predatory invertebrates (90%). Habitat features and canopy openness significantly influenced species assemblages; however, prey or predator density had far and away the most significant structuring effects. If biotic forces are at least as important as the abiotic forces while the importance of stochasticity declines towards upper trophic levels, then trophic levels could respond differently to natural or anthropogenic disturbance and to shifts in species distributions. The effects of such differential responses on food web reconfiguration, however, remain to be elucidated. © 2019, Springer Nature Switzerland AG.  
  Address UMR EcoFoG (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00188158 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 996  
Permanent link to this record
 

 
Author Svensk, M.; Coste, S.; Gérard, B.; Gril, E.; Julien, F.; Maillard, P.; Stahl, C.; Leroy, C. doi  openurl
  Title (down) Drought effects on resource partition and conservation among leaf ontogenetic stages in epiphytic tank bromeliads Type Journal Article
  Year 2020 Publication Physiologia Plantarum Abbreviated Journal Physiol. Plant.  
  Volume 170 Issue 4 Pages 488-507  
  Keywords chlorophyll; nitrogen; water; Bromeliaceae; drought; metabolism; photosynthesis; plant leaf; Bromeliaceae; Chlorophyll; Droughts; Nitrogen; Photosynthesis; Plant Leaves; Water  
  Abstract Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage. © 2020 Scandinavian Plant Physiology Society  
  Address Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, 31062, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00319317 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes PDF trop gros voir la documentaliste – merci Approved no  
  Call Number EcoFoG @ webmaster @ Serial 943  
Permanent link to this record
 

 
Author Mirabel, A.; Hérault, B.; Marcon, E. url  doi
openurl 
  Title (down) Diverging taxonomic and functional trajectories following disturbance in a Neotropical forest Type Journal Article
  Year 2020 Publication Science of The Total Environment Abbreviated Journal  
  Volume 720 Issue Pages 137397  
  Keywords Community ecology; Disturbance trajectories; Intermediate disturbance hypothesis; Mid-term resilience; Neotropical forests; Taxonomic and functional biodiversity  
  Abstract In the current global change context, it is urgent to anticipate the fate of tropical forests. This means understanding tree community response to disturbance and the underlying processes. In that respect, we aim here to clarify taxonomic and functional post-disturbance trajectories, and determine the scope of the Intermediate Disturbance Hypothesis (IDH) that remains debated in tropical forests. We analyzed community trajectories following a disturbance gradient from 10 to 60% of above-ground biomass loss in a Neotropical forest over 30 years. We considered trajectories along time of community taxonomic and functional trajectories in terms of richness, evenness, composition, and redundancy. We based on the annual botanical inventories of 75 ha of a Neotropical forest and on large trait datasets comprising seven leaf, stem, and life-history traits. We identified a decoupling between taxonomic composition, differing among communities, and functional composition, similar among communities and convergent in the functional space. The taxonomic diversity followed humped-shaped trajectories along time after disturbance depending on the initial disturbance intensity, which validated the IDH (Intermediate Disturbance Hypothesis). The functional diversity trajectories, however, were homogeneous among plots and dismissed the IDH. We explained this decoupling by the variations in community functional redundancy that mitigated the functional impact of disturbance. Although consistent, the recovery of community composition, diversity, and redundancy remained divergent from the initial state after 30 years. These results acknowledged the need of decades-long cycles without disturbance to ensure community complete recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 920  
Permanent link to this record
 

 
Author Lang, G.; Marcon, E.; Puech, F. doi  openurl
  Title (down) Distance-based measures of spatial concentration: introducing a relative density function Type Journal Article
  Year 2020 Publication Annals of Regional Science Abbreviated Journal Ann. Reg. Sci.  
  Volume 64 Issue 2 Pages 243-265  
  Keywords Agglomeration; Aggregation; Economic geography; Point patterns; Spatial concentration; accuracy assessment; econometrics; economic activity; economic geography; industrial agglomeration; industrial location; location decision; spatial analysis; spatial distribution  
  Abstract For more than a decade, distance-based methods have been widely employed and constantly improved in spatial economics. These methods are a very useful tool for accurately evaluating the spatial distribution of economic activity. We introduce a new distance-based statistical measure for evaluating the spatial concentration of industries. The m function is the first relative density function to be proposed in economics. This tool supplements the typology of distance-based methods recently drawn up by Marcon and Puech (J Econ Geogr 3(4):409–428, 2003). By considering several simulated and real examples, we show the advantages and the limits of the m function for detecting spatial structures in economics. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address RITM, Univ. Paris-Sud, Université Paris-Saclay and CREST, Sceaux, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 05701864 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 976  
Permanent link to this record
 

 
Author Fortunel, C.; Stahl, C.; Heuret, P.; Nicolini, E.; Baraloto, C. doi  openurl
  Title (down) Disentangling the effects of environment and ontogeny on tree functional dimensions for congeneric species in tropical forests Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 226 Issue 2 Pages 385-395  
  Keywords chemistry; developmental stage; habitats; Micropholis; morphology; physiology; plant traits; seasons; developmental stage; ecosystem function; forest ecosystem; habitat selection; habitat structure; nutrient availability; ontogeny; physiological response; soil water; taxonomy; tropical forest; Amazonia  
  Abstract Soil water and nutrient availability are key drivers of tree species distribution and forest ecosystem functioning, with strong species differences in water and nutrient use. Despite growing evidence for intraspecific trait differences, it remains unclear under which circumstances the effects of environmental gradients trump those of ontogeny and taxonomy on important functional dimensions related to resource use, particularly in tropical forests. Here, we explore how physiological, chemical, and morphological traits related to resource use vary between life stages in four species within the genus Micropholis that is widespread in lowland Amazonia. Specifically, we evaluate how environment, developmental stage, and taxonomy contribute to single-trait variation and multidimensional functional strategies. We find that environment, developmental stage, and taxonomy differentially contribute to functional dimensions. Habitats and seasons shape physiological and chemical traits related to water and nutrient use, whereas developmental stage and taxonomic identity impact morphological traits –especially those related to the leaf economics spectrum. Our findings suggest that combining environment, ontogeny, and taxonomy allows for a better understanding of important functional dimensions in tropical trees and highlights the need for integrating tree physiological and chemical traits with classically used morphological traits to improve predictions of tropical forests’ responses to environmental change. © 2019 The Authors New Phytologist © 2019 New Phytologist Trust  
  Address Department of Biological Sciences, Florida International University, Miami, FL 33133, United States  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 977  
Permanent link to this record
 

 
Author Birer, C.; Moreau, C.S.; Tysklind, N.; Zinger, L.; Duplais, C. doi  openurl
  Title (down) Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest Type Journal Article
  Year 2020 Publication Molecular Ecology Abbreviated Journal Mol. Ecol.  
  Volume 29 Issue 7 Pages 1372-1385  
  Keywords ant gardens; bacterial communities; cuticular microbiome; insect cuticle; metabarcoding  
  Abstract Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants. © 2020 John Wiley & Sons Ltd  
  Address Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09621083 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 975  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: