toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Ruschel, A.R.; Souza, C.R. de; Vidal, E.; Wortel, V.; Hérault, B. pdf  doi
openurl 
  Title (down) Optimal strategies for ecosystem services provision in Amazonian production forests Type Journal Article
  Year 2019 Publication Environmental Research Letters Abbreviated Journal  
  Volume 14 Issue 12 Pages 124090  
  Keywords  
  Abstract Although tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting high-intensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and trans-boundary forest management.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 910  
Permanent link to this record
 

 
Author Aimene, Y.; Dorville, R.; Omrane, A. url  openurl
  Title (down) Optimal control for trees trunk diameter estimation in rain forest ecology Type Journal Article
  Year 2013 Publication Applied Mathematical Sciences Abbreviated Journal  
  Volume 7 Issue 17-20 Pages 807-816  
  Keywords Missing data; Optimal control; Tree trunk diameter  
  Abstract We study the optimal control question for an important mechanical problem related to tree trunk diameter variation in tropical forest ecology where some data are missing. Within a cost function, the control problem is formulated with a mechanical model that requires boundary conditions tosolve all equations. We give a characterization of the optimal measurement function for the tree trunk problem.  
  Address Laboratoire CEREGMIA EA 2440, Université Antilles-Guyane, I.E.S.G Campus de Trou-Biran, Route de Baduel, 97337 Cayenne, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 February 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 469  
Permanent link to this record
 

 
Author Dejean, A.; Djieto-Lordon, C.; Cereghino, R.; Leponce, M. openurl 
  Title (down) Ontogenetic succession and the ant mosaic: An empirical approach using pioneer trees Type Journal Article
  Year 2008 Publication Basic and Applied Ecology Abbreviated Journal Basic Appl. Ecol.  
  Volume 9 Issue 3 Pages 316-323  
  Keywords ant-plant relationships; dynamics of associations; myrmecophytes; species turnover; tropical rainforests  
  Abstract Arboreal ant mosaics have been intensively investigated, but what generates these mosaics remains poorly understood. In this paper, we hypothesize that the dynamics of arboreal ant mosaics could be better understood by examining the ontogenetic succession of ants in tropical trees. We used three African pioneer tree species as biological models. Lophira alata (Ochnaceae) is a long-lived species that does not furnish any reward (i.e., extra-floral nectaries [EFNs], shelter) to ants, Anthocleista vogelii (Gentianaceae) bears extremely well-developed EFNs, and Barteria fistulosa (Passifloraceae) is a long-lived myrmecophyte providing both EFNs and domatia. For both L. alata and A. vogelii, we noted a succession of different associated ants as the plants grew and aged. Ground-nesting, arborealforaging ant species were the first associates, followed by arboreal species that build nests with the leaves of their host trees, together with some species nesting opportunistically in pre-existing cavities. Carton-building Crematogaster species were the last in this succession. The presence of EFNs on A. vogelii slows species turnover, demonstrating that the plant exerts some control over its ant associates. The comparison with B. fistulosa, which generally remains associated with the same plant-ant species during its entire ontogeny, highlights the importance of the selective attractiveness of the trees for their associated ants – or, perhaps, the existence of plant filters that screen arriving ants. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.  
  Address [Dejean, Alain] CNRS Guyane, UPS 2561, F-97300 Cayenne, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher ELSEVIER GMBH, URBAN & FISCHER VERLAG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-1791 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000256734600013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 138  
Permanent link to this record
 

 
Author Talaga, S.; Murienne, J.; Dejean, A.; Leroy, C. pdf  url
openurl 
  Title (down) Online database for mosquito (Diptera, Culicidae) occurrence records in French guiana Type Journal Article
  Year 2015 Publication ZooKeys Abbreviated Journal ZooKeys  
  Volume 2015 Issue 532 Pages 107-115  
  Keywords Diversity; French guiana; Mosquitoes; Neotropics; Occurrence  
  Abstract A database providing information on mosquito specimens (Arthropoda: Diptera: Culicidae) collected in French Guiana is presented. Field collections were initiated in 2013 under the auspices of the CEnter for the study of Biodiversity in Amazonia (CEBA: http://www.labexceba.fr/en/). This study is part of an ongoing process aiming to understand the distribution of mosquitoes, including vector species, across French Guiana. Occurrences are recorded after each collecting trip in a database managed by the laboratory Evolution et Diversité Biologique (EDB), Toulouse, France. The dataset is updated monthly and is available online. Voucher specimens and their associated DNA are stored at the laboratory Ecologie des Forêts de Guyane (Ecofog), Kourou, French Guiana. The latest version of the dataset is accessible through EDB’s Integrated Publication Toolkit at http://130.120.204.55:8080/ipt/resource.do?r=mosquitoesof french_guiana or through the Global Biodiversity Information Facility data portal at http://www.gbif.org/ dataset/5a8aa2ad-261c-4f61-a98e-26dd752fe1c5 It can also be viewed through the Guyanensis platform at http://guyanensis.ups-tlse.fr © Stanislas Talaga et al.  
  Address IRD, Laboratoire de botAnique et Modélisation de l’Architecture des Plantes et des végétations (AMAP; UMR 123), Boulevard de la Lironde, TA A-51/PS2, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 November 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 640  
Permanent link to this record
 

 
Author Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L.V.; Wofsy, S.C.; Munger, J.W.; Dlugokencky, E.; Ciais, P. pdf  url
openurl 
  Title (down) On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia Type Journal Article
  Year 2015 Publication Atmospheric Chemistry and Physics Abbreviated Journal Atmospheric Chemistry and Physics  
  Volume 15 Issue 14 Pages 8423-8438  
  Keywords  
  Abstract The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO<inf>2</inf> fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO<inf>2</inf> mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO<inf>2</inf> observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009. © Author(s) 2015.  
  Address NOAA, Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 27 August 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 615  
Permanent link to this record
 

 
Author Young, E.F.; Belchier, M.; Hauser, L.; Horsburgh, G.J.; Meredith, M.P.; Murphy, E.J.; Pascoal, S.; Rock, J.; Tysklind, N.; Carvalho, G.R. pdf  url
openurl 
  Title (down) Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species Type Journal Article
  Year 2015 Publication Evolutionary Applications Abbreviated Journal Evolutionary Applications  
  Volume 8 Issue 5 Pages 486-509  
  Keywords Notothenia rossii; Champsocephalus gunnari; Connectivity; Individual-based Modelling; Ocean circulation; Planktonic dispersal; Population genetics; Scotia Sea  
  Abstract Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. © 2015 The Authors.  
  Address Campus Agronomique, Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 May 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 604  
Permanent link to this record
 

 
Author Grau, O.; Peñuelas, J.; Ferry, B.; Freycon, V.; Blanc, L.; Desprez, M.; Baraloto, C.; Chave, J.; Descroix, L.; Dourdain, A.; Guitet, S.; Janssens, I.A.; Sardans, J.; Herault, B. pdf  url
doi  openurl
  Title (down) Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils Type Journal Article
  Year 2017 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 7 Issue Pages 45017  
  Keywords biomass; forest structure; French Guiana; mortality; nutrient availability; nutrient content; nutrient cycling; nutrient uptake; productivity; soil; storage; tropical rain forest  
  Abstract Tropical forests store large amounts of biomass despite they generally grow in nutrient-poor soils, suggesting that the role of soil characteristics in the structure and dynamics of tropical forests is complex. We used data for >34 000 trees from several permanent plots in French Guiana to investigate if soil characteristics could predict the structure (tree diameter, density and aboveground biomass), and dynamics (growth, mortality, aboveground wood productivity) of nutrient-poor tropical forests. Most variables did not covary with site-level changes in soil nutrient content, indicating that nutrient-cycling mechanisms other than the direct absorption from soil (e.g. the nutrient uptake from litter, the resorption, or the storage of nutrients in the biomass), may strongly control forest structure and dynamics. Ecosystem-level adaptations to low soil nutrient availability and long-term low levels of disturbance may help to account for the lower productivity and higher accumulation of biomass in nutrient-poor forests compared to nutrient-richer forests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 April 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 748  
Permanent link to this record
 

 
Author Peguero, G.; Sardans, J.; Asensio, D.; Fernández-Martínez, M.; Gargallo-Garriga, A.; Grau, O.; Llusià, J.; Margalef, O.; Márquez, L.; Ogaya, R.; Urbina, I.; Courtois, E.A.; Stahl, C.; Van Langenhove, L.; Verryckt, L.T.; Richter, A.; Janssens, I.A.; Peñuelas, J. url  doi
openurl 
  Title (down) Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests Type Journal Article
  Year 2019 Publication Proceedings. Biological sciences Abbreviated Journal Proc. Biol. Sci.  
  Volume 286 Issue 1910 Pages 20191300  
  Keywords biogeochemistry; extracellular enzyme activity; litter decomposition; nutrients; soil fauna  
  Abstract Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.  
  Address Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1090, Austria  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14712954 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 884  
Permanent link to this record
 

 
Author Dejean, Alain ; Petitclerc, Frédéric ; Azémar, Frédéric ; Rossi, Vivien doi  openurl
  Title (down) Nutrient provisioning of its host myrmecophytic tree by a temporary social parasite of a plant-ant Type Journal Article
  Year 2021 Publication Biological Journal of the Linnean Society Abbreviated Journal  
  Volume 133 Issue 3 Pages 744-750  
  Keywords  
  Abstract One of the most advanced ant–plant mutualisms is represented by myrmecophytes sheltering colonies of some plant-ant species in hollow structures called domatia. In turn, the myrmecophytes benefit from biotic protection and sometimes nutrient provisioning (myrmecotrophy). Furthermore, over the course of evolution, some ant species have become social parasites of others. In this general context, we studied the relationship between its host trees and Azteca andreae (Dolichoderinae), a temporary social parasite of the plant-ant Azteca ovaticeps, and, as such, obligatorily associated with myrmecophytic Cecropia obtusa trees (Urticaceae). A first experiment showed that the δ15N values of the young leaves of Cecropia sheltering a mature A. andreae colony were very similar to those for trees sheltering Azteca alfari or A. ovaticeps, two typical Cecropia mutualists for which myrmecotrophy is known. In a second experiment, by injecting a 15N-labelled glycine solution into locusts given as prey to A. andreae colonies, we triggered an increase in δ15N in the young leaves of their host Cecropia. Thus, 15N passed from the prey to the host trees, explaining the outcomes of the first experiment. We discuss these results in light of the notion of ‘by-product benefits’.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford Academy Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1009  
Permanent link to this record
 

 
Author Barantal, S.; Schimann, H.; Fromin, N.; Hattenschwiler, S. url  openurl
  Title (down) Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest Type Journal Article
  Year 2012 Publication Ecosystems Abbreviated Journal Ecosystems  
  Volume 15 Issue 7 Pages 1039-1052  
  Keywords energy limitation; labile carbon; litter quality; nitrogen; phosphorus; priming effect; soil fauna; tropical forest  
  Abstract Tropical forests determine global biogeochemical cycles to a large extent, but control factors for key ecosystem processes such as decomposition remain poorly understood. With a full-factorial C (cellulose), N (urea), and P (phosphate) fertilization experiment, we tested the relative importance of C and nutrient limitation on litter decomposition in a mature lowland moist forest of French Guiana. Despite the previously demonstrated litter C quality control over decomposition and the very low soil P content (0. 1 mg g -1 of soil) at our study site, fertilization with C or P alone did not increase the decomposition of a wide range of litter types (N:P ratios between 20 and 80). Nitrogen fertilization alone also had no effect on decomposition. However, the combined fertilization with N and P resulted in up to 33. 5% more initial litter mass lost, with an increasing effect with wider litter N:P ratios. Soil fauna strongly stimulated litter mass loss and enhanced nutrient fertilization effects. Moreover, nutrient effects on decomposition increased with additional C fertilization in the presence of fauna. Our results suggest that increased N availability is required for a positive P effect on decomposition in the studied P-poor tropical forest. Further stimulation of decomposition by C amendment through priming indicates energy limitation of decomposers that is co-determined by nutrient availability. The demonstrated intricate control of the key resources C, N, and P on decomposition calls for an intensified research effort on multiple resource limitation on key processes in tropical forests and how they change under multiple human impacts. © 2012 Springer Science+Business Media, LLC.  
  Address UMR Ecologie des Forêts de Guyane (ECOFOG), INRA, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14329840 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 November 2012; Source: Scopus; Coden: Ecosf; doi: 10.1007/s10021-012-9564-9; Language of Original Document: English; Correspondence Address: Schimann, H.; UMR Ecologie des Forêts de Guyane (ECOFOG), INRA, Kourou, French Guiana; email: heidy.schimann@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 442  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: