toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zinger, L.; Donald, J.; Brosse, S.; Gonzalez, M.A.; Iribar, A.; Leroy, C.; Murienne, J.; Orivel, J.; Schimann, H.; Taberlet, P.; Lopes, C.M. doi  openurl
  Title Advances and prospects of environmental DNA in neotropical rainforests Type Journal Article
  Year 2020 Publication Advances in Ecological Research Abbreviated Journal Adv. Ecol. Res.  
  Volume 62 Issue Pages 331-373  
  Keywords Biomonitoring; Conservation biology; DNA metabarcoding; eDNA; Environmental genomics; Neotropics; Rainforests  
  Abstract The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond. © 2020 Elsevier Ltd  
  Address Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil  
  Corporate Author Thesis  
  Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Advances in Ecological Research  
  Series Volume (down) 62 Series Issue Edition  
  ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 995  
Permanent link to this record
 

 
Author Sayer, E.J.; Rodtassana, C.; Sheldrake, M.; Bréchet, L.M.; Ashford, O.S.; Lopez-Sangil, L.; Kerdraon-Byrne, D.; Castro, B.; Turner, B.L.; Wright, S.J.; Tanner, E.V.J. doi  openurl
  Title Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest Type Journal Article
  Year 2020 Publication Advances in Ecological Researc Abbreviated Journal Adv. Ecol. Res.  
  Volume 62 Issue Pages 173-223  
  Keywords Forest floor; Litter addition; Litter removal; Litterfall; Nutrient cycling; Nutrient use efficiency; Soil fertility; Trace elements; Tropical lowland forest  
  Abstract The crucial role of tropical forests in the global carbon balance is underpinned by their extraordinarily high biomass and productivity, even though the majority of tropical forests grow on nutrient-poor soils. Nutrient cycling by litterfall has long been considered essential for maintaining high primary productivity in lowland tropical forests but few studies have tested this assumption experimentally. We review and synthesise findings from the Gigante Litter Manipulation Project (GLiMP), a long-term experiment in lowland tropical forest in Panama, Central America, in which litter has been removed from or added to large-scale plots for 15 years. We assessed changes in soil and litter nutrient concentrations in response to the experimental treatments and estimated nutrient return and nutrient use efficiency to indicate changes in nutrient cycling. The soil concentrations of most nutrients increased with litter addition and declined with litter removal. Litter removal altered nitrogen, potassium, manganese and zinc cycling, demonstrating the importance of litter inputs for maintaining the availability of these elements to plants. By contrast, litter addition only altered nitrogen cycling and, despite low concentrations of available soil phosphorus, the effects of litter manipulation on phosphorus cycling were inconsistent. We discuss potential mechanisms underlying the observed changes, and we emphasise the importance of decomposition processes in the forest floor for retaining nutrient elements, which partially decouples nutrient cycling from the mineral soil. Finally, by synthesising GLiMP studies conducted during 15 years of litter manipulation, we highlight key knowledge gaps and avenues for future research into tropical forest nutrient cycling. © 2020 Elsevier Ltd  
  Address Teagasc, Johnstown Castle, Wexford, Ireland  
  Corporate Author Thesis  
  Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Advances in Ecological Research  
  Series Volume (down) 62 Series Issue Edition  
  ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1001  
Permanent link to this record
 

 
Author Servigne, P.; Orivel, J.; Azémar, F.; Carpenter, J.; Dejean, A.; Corbara, B. doi  openurl
  Title An uneasy alliance: a nesting association between aggressive ants and equally fierce social wasps Type Journal Article
  Year 2020 Publication Insect Science Abbreviated Journal Insect Science  
  Volume 27 Issue 1 Pages 122-132  
  Keywords Azteca chartifex ants; interspecific association; mutualism; Polybia rejecta wasps; scent trail erasure  
  Abstract Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder, its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta (F.).
In French Guiana, 83.33% of the 48 P. rejecta nests recorded were found side by side with those of A. chartifex. This nesting association results in mutual protection from predators (i.e., the wasps protected from army ants; the ants protected from birds).
We conducted field studies, laboratory-based behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association. Due to differences in the cuticular profiles of the two species, we eliminated the possibility of chemical mimicry.
Also, analyses of the carton nests did not reveal traces of marking on the envelopes. Because ant forager flows were not perturbed by extracts from the wasps' Dufour's and venom glands, we rejected any hypothetical action of repulsive chemicals. Nevertheless, we noted that the wasps 'scraped' the surface of the upper part of their nest envelope using their mandibles, likely removing the ants' scent trails, and an experiment showed that ant foragers were perturbed by the removal of their scent trails. This leads us to use the term 'erasure hypothesis'. Thus, this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to 'contain' their associated ants through the elimination of their scent trails, direct attacks, 'wing-buzzing' behavior and ejecting the ants.
 
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1672-9609 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/1744-7917.12597 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 885  
Permanent link to this record
 

 
Author Falkowski, M.; Jahn-Oyac, A.; Odonne, G.; Flora, C.; Estevez, Y.; Touré, S.; Boulogne, I.; Robinson, J.-C.; Béreau, D.; Petit, P.; Azam, D.; Coke, M.; Issaly, J.; Gaborit, P.; Stien, D.; Eparvier, V.; Dusfour, I.; Houël, E. url  doi
openurl 
  Title Towards the optimization of botanical insecticides research: Aedes aegypti larvicidal natural products in French Guiana Type Journal Article
  Year 2020 Publication Acta Tropica Abbreviated Journal  
  Volume 201 Issue 105179 Pages  
  Keywords Amazonian chemodiversity; Chemical defense; Culicidae; Mosquito larvicides; Quasi-Poisson generalized linear model; Screening optimization  
  Abstract Natural products have proven to be an immeasurable source of bioactive compounds. The exceptional biodiversity encountered in Amazonia, alongside a rich entomofauna and frequent interactions with various herbivores is the crucible of a promising chemodiversity. This prompted us to search for novel botanical insecticides in French Guiana. As this French overseas department faces severe issues linked to insects, notably the strong incidence of vector-borne infectious diseases, we decided to focus our research on products able to control the mosquito Aedes aegypti. We tested 452 extracts obtained from 85 species originating from 36 botanical families and collected in contrasted environments against an Ae. aegypti laboratory strain susceptible to all insecticides, and a natural population resistant to both pyrethroid and organophosphate insecticides collected in Cayenne for the most active of them. Eight species (Maytenus oblongata Reissek, Celastraceae; Costus erythrothyrsus Loes., Costaceae; Humiria balsamifera Aubl., Humiriaceae; Sextonia rubra (Mez) van der Werff, Lauraceae; Piper hispidum Sw., Piperaceae; Laetia procera (Poepp.) Eichl., Salicaceae; Matayba arborescens (Aubl.) Radlk., Sapindaceae; and Cupania scrobitulata Rich., Sapindaceae) led to extracts exhibiting more than 50% larval mortality after 48 h of exposition at 100 µg/mL against the natural population and were considered active. Selectivity and phytochemistry of these extracts were therefore investigated and discussed, and some active compounds highlighted. Multivariate analysis highlighted that solvents, plant tissues, plant family and location had a significant effect on mortality while light, available resources and vegetation type did not. Through this case study we highlighted that plant defensive chemistry mechanisms are crucial while searching for novel insecticidal products.  
  Address INRS-Institut Armand Frappier, Groupe recherche en écologie microbienne, 531 boulevard des prairies, Laval, QC H7V 1B7, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 888  
Permanent link to this record
 

 
Author Dessert, C.; Clergue, C.; Rousteau, A.; Crispi, O.; Benedetti, M.F. url  doi
openurl 
  Title Atmospheric contribution to cations cycling in highly weathered catchment, Guadeloupe (Lesser Antilles) Type Journal Article
  Year 2020 Publication Chemical Geology Abbreviated Journal Chem. Geol.  
  Volume 531 Issue 119354 Pages  
  Keywords Atmospheric deposit; Cation-nutrient recycling; Critical Zone; Saharan dust; Sr and Nd isotopes; Atmospheric chemistry; Biogeochemistry; Catchments; Deposits; Dust; Ecosystems; Forestry; Isotopes; Lakes; Positive ions; Rain; Recycling; Runoff; Soil moisture; Soil surveys; Tropics; Vegetation; Volcanoes; Weathering; Atmospheric deposits; Critical zones; Nutrient recycling; Saharan dust; Sr and Nd isotopes; Nutrients; catchment; cation; dust; isotopic composition; neodymium isotope; regolith; strontium isotope; trace element; water chemistry; water quality; Guadeloupe; Leeward Islands [Lesser Antilles]; Sahara  
  Abstract The important fertilizing role of atmospheric dust, and particularly African dust, in tropical rainforests is increasingly recognized but still poorly quantified. To better evaluate dust input into the Caribbean basin, we sampled critical zone compartments of a small forested volcanic catchment in Guadeloupe (soils, parent rock, atmospheric dust, plants, soil solutions, stream and rain waters). The aims of this study are to track sources of cation nutrients (Ca, Mg, K, Sr) developed on highly weathered soil in the rainforest of Guadeloupe, to quantify plant recycling of these nutrients, and to identify constraints on regolith development and its associated nutrient pool. In the Quiock Creek catchment, a large isotopic range of 87Sr/86Sr and eNd values was observed despite the small scale of observation. Sr isotopic composition of the dissolved load varied from 0.7084 in rainfall to 0.7110 in soil solution, whereas it ranges between 0.7068 and 0.7153 for soil samples and between 0.7096 and 0.7102 for plants. The Nd isotopic composition varied between -8.39 in near-surface soil samples to 2.71 in deeper soil. All samples had an intermediate signature between that of the bedrock endmember (87Sr/86Sr = 0.7038; eNd = 4.8) and the atmospheric endmember (sea salt: 87Sr/86Sr = 0.7092 and Saharan dust: 87Sr/86Sr = 0.7187, eNd=-11.5). The regolith was built on pyroclastic deposits, but, because of extreme leaching, the regolith has lost its original bedrock signature and inherited an exogenous atmospheric signature. Our results show that only the chemical weathering of the fresh near-surface minerals can provide nutrients to the ecosystem (first 30 cm). However, this dust weathering is too low to sustain the tropical forest ecosystem on its own. The cationic mass balance at the catchment scale, as well as the Sr isotopic signature, show that cation and Sr fluxes are of atmospheric origin only and that original bedrock no longer participates in nutrient cycles. The vegetation reflects the 87Sr/86Sr of the dissolved pool of atmospheric Sr. At the soil-plant scale, the cation-nutrient fluxes provided by vegetation (litter fall + leaf excretion) are major compared to input and output fluxes. The annual Ca, K, Sr and Mg fluxes within the vegetation are, respectively, 31, 28, 20 and 3 times greater than the exported fluxes at the outlet of the basin. The residence time of nutrients in the vegetation is 16 years for K and close to 45 years for Sr, Ca and Mg. These results emphasize the highly efficient vegetative turnover that dominates the nutrient cycle in the Quiock Creek catchment. This first characterization of biogeochemical cycles in the Guadeloupean rainforest suggests that the forest community of Quiock Creek is sustained by a small near-surface nutrient pool disconnected from the deep volcanic bedrock. We also demonstrated that, even with efficient nutrient recycling, Saharan dust plays a significant role in maintaining ecosystem productivity in Guadeloupe over long-time scales.  
  Address Laboratoire de biologie et de physiologie végétales, UMR EcoFoG, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Pointe-à-Pitre, 97159, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 00092541 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 November 2019; Correspondence Address: Dessert, C.; Université de Paris, Institut de physique du globe de Paris, CNRSFrance; email: dessert@ipgp.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 895  
Permanent link to this record
 

 
Author Van Langenhove, L.; Janssens, I.A.; Verryckt, L.; Brechet, L.; Hartley, I.P.; Stahl, C.; Courtois, E.; Urbina, I.; Grau, O.; Sardans, J.; Peguero, G.; Gargallo-Garriga, A.; Peñuelas, J.; Vicca, S. url  doi
openurl 
  Title Rapid root assimilation of added phosphorus in a lowland tropical rainforest of French Guiana Type Journal Article
  Year 2020 Publication Soil Biology and Biochemistry Abbreviated Journal Soil Biol. Biochem.  
  Volume 140 Issue 107646 Pages  
  Keywords Fertilization; Nitrogen; Phosphorus; Plant root simulator probes; Root system; Tropical forest; Nitrogen; Nitrogen fertilizers; Phosphorus; Plants (botany); Soils; Tropics; Fertilization; Mycorrhizal fungus; N and P fertilizer; P availabilities; Plant root simulators; Root system; Tropical forest; Tropical rain forest; Forestry; Fungi  
  Abstract Tree growth on weathered soils in lowland tropical forests is limited by low phosphorous (P) availability. However, nutrient manupulation experiments do not always increase the P content in these trees, which raises the question whether trees are taking up added P. In French Guianese lowland rainforest, we measured changes in nitrogen (N) and P availability before and up to two months after N and P fertilizer addition, in soils with intact root systems and in soils where roots and mycorrhizal fungi were excluded by root exclusion cylinders. When the root system was excluded, P addition increased P availability to a much greater extent and for a longer time than in soils with an intact root system. Soil N dynamics were unaffected by root presence/absence. These results indicate rapid P uptake, but not N uptake, by tree roots, suggesting a very effective P acquisition process in these lowland rainforests.  
  Address Global Change Research Institute, Czech Academy of Sciences, Czech Republic  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 00380717 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 19 November 2019; Coden: Sbioa; Correspondence Address: Van Langenhove, L.; Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium; email: leandro.vanlangenhove@uantwerpen.be Approved no  
  Call Number EcoFoG @ webmaster @ Serial 897  
Permanent link to this record
 

 
Author Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y.; Simic-Milas, A.; Noland, T.L.; He, Y.; Homolová, L.; Malenovský, Z.; Yi, Q.; Beringer, J.; Amiri, R.; Hutley, L.; Arellano, P.; Stahl, C.; Bonal, D. url  doi
openurl 
  Title The global distribution of leaf chlorophyll content Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sens. Environ.  
  Volume 236 Issue 111479 Pages  
  Keywords  
  Abstract Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially-continuous view of terrestrial leaf chlorophyll content (ChlLeaf) at the global scale. Weekly maps of ChlLeaf were produced from ENVISAT MERIS full resolution (300 m) satellite data using a two-stage physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was input into the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm was validated using measured ChlLeaf data from 248 sample measurements at 28 field locations, and covering six plant functional types (PFTs). Modelled results show strong relationships with field measurements, particularly for deciduous broadleaf forests (R2 = 0.67; RMSE = 9.25 microg cm-2; p < 0.001), croplands (R2 = 0.41; RMSE = 13.18 microg cm-2; p < 0.001) and evergreen needleleaf forests (R2 = 0.47; RMSE = 10.63 microg cm-2; p < 0.001). When the modelled results from all PFTs were considered together, the overall relationship with measured ChlLeaf remained good (R2 = 0.47, RMSE = 10.79 microg cm-2; p < 0.001). This result is an improvement on the relationship between measured ChlLeaf and a commonly used chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R2 = 0.27, p < 0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf forests presenting the highest leaf chlorophyll values, with global annual median values of 54.4 microg cm-2. Distinct seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, energy and carbon cycle modelling.  
  Address UMR EEF, INRA Université de Lorraine, Champenoux54280, France  
  Corporate Author Thesis  
  Publisher Elsevier Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 00344257 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 898  
Permanent link to this record
 

 
Author Lehnebach, R.; Doumerc, L.; Clair, B.; Alméras, T. url  doi
openurl 
  Title Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Type Journal Article
  Year 2020 Publication Botany Abbreviated Journal Bot.  
  Volume 98 Issue 1 Pages 1-8  
  Keywords Bark anatomical structure; Mechanical stress; Sclereids; Secondary phloem; Tree biomechanics; Tropical species  
  Abstract Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark. Significant tensile or compressive longitudinal stresses were observed in the stems of most species. Tensile longitudinal stress was observed in various botanical families and was always associated with fibers arranged in a trellis-like structure and strong dilatation of rays. The highest tensile stress was recorded in species with gelatinous fibers forming a treillis. Compressive stress was typically associated with a large amount of sclereids in the bark, supporting the differentiation of sclereids as a potential origin of the generation of longitudinal compressive stresses in bark. In species exhibiting both a fibrous trellis structure and a significant amount of sclereids, the sign of longitudinal stress may depend on the balance between these two mechanisms.  
  Address Faculty of Bioscience Engineering, Laboratory of Wood Technology, Woodlab, Coupure Links 653, Gent, B-9000, Belgium  
  Corporate Author Thesis  
  Publisher Canadian Science Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 19162804 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 20 January 2020; Correspondence Address: Lehnebach, R.; Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, 860 rue de St. Priest, France; email: lehnebach.romain@hotmail.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 913  
Permanent link to this record
 

 
Author Chave, J.; Piponiot, C.; Maréchaux, I.; de Foresta, H.; Larpin, D.; Fischer, F.J.; Derroire, G.; Vincent, G.; Hérault, B. url  doi
openurl 
  Title Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics Type Journal Article
  Year 2020 Publication Ecological Applications Abbreviated Journal Ecol. Appl.  
  Volume 30 Issue 1 Pages e02004  
  Keywords biomass; carbon; forest; French Guiana; regeneration; secondary forests; tropics; accumulation rate; Bayesian analysis; biomass; carbon sequestration; chronosequence; fertility; old-growth forest; pioneer species; regeneration; secondary forest; Costa Rica; French Guiana; Guyana Shield; Goupia glabra; Laetia procera; Xylopia  
  Abstract Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha−1·yr−1) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.  
  Address INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 19395582 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 914  
Permanent link to this record
 

 
Author Do, N.A.; Dias, D.; Zhang, Z.; Huang, X.; Nguyen, T.T.; Pham, V.V.; Nait-Rabah, O. url  doi
openurl 
  Title Study on the behavior of squared and sub-rectangular tunnels using the Hyperstatic Reaction Method Type Journal Article
  Year 2020 Publication Transportation Geotechnics Abbreviated Journal Transp. Geotech.  
  Volume 22 Issue 100321 Pages  
  Keywords Finite element method; Lining; Squared shape; Sub-rectangular shape; Tunnel; efficiency measurement; finite element method; numerical model; transportation development; transportation planning; tunnel design; tunnel lining  
  Abstract  
  Address Saint-Petersburg Mining University, Russian Federation  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 22143912 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 915  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: