toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dejean, A.; Petitclerc, F.; Azémar, F. doi  openurl
  Title Seasonality influences ant-mediated nutrient acquisition (myrmecotrophy) by a Neotropical myrmecophyte Type Journal Article
  Year 2020 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 34 Issue 4 Pages 645-657  
  Keywords Ant-plant relationships; Mutualism; Myrmecophyte; Myrmecotrophy; Phenology; Stable isotopes; ant; herb; host plant; life cycle; myrmecochory; myrmecophyte; Neotropical Region; phenology; seasonality; stable isotope; understory; Gentianaceae; Tachia; Tachia guianensis  
  Abstract Tachia guianensis (Gentianaceae), a Neotropical understory myrmecophyte, shelters ant colonies in its hollow trunks and branches (domatia). In turn, it is protected from defoliators and obtains nutrients from ant-produced wastes (myrmecotrophy). Aiming to verify if seasonality influences nitrogen assimilation via ant wastes using the stable isotope nitrogen-15, we first studied Tachia’s phenology and its seasonal leaf production, and then the life cycle of its two more frequent guest ant species. We found that leaf production was much higher during the rainy than the dry season. Mature guest ant colonies produced sexuals regardless of the season and the net weight of the waste piles inside the domatia did not vary between seasons, so that the availability of nutrients to their host plant is steady year-long. By providing the two most frequent mutualistic guest ant species with food enriched with nitrogen-15, we showed that Tachia individuals assimilate more nitrogen from ant wastes during the rainy season, when the plant is physiologically active, compared to the dry season. Thus, one can deduce that the increase in nitrogen assimilation during the rainy season is determined by the increase in Tachia’s physiological activity during that season. Information gathered through a bibliographic compilation confirms that none of the 15 ant species known to be associated with myrmecophytes for which the life cycle was studied is characterized by seasonal reproduction (which would result in fluctuating waste production). The same is true for 49.7% of 167 tropical ant species (seasonal production for the remaining species). We concluded that, in contrast to the non-seasonal ant colony reproductive cycle, Tachia’s phenology determines the myrmecotrophic assimilation rate. © 2020, Springer Nature Switzerland AG.  
  Address CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 02697653 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 956  
Permanent link to this record
 

 
Author Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; Derroire, G.; dos-Santos, M.N.; Meyer, V.; Saleska, S.; Trumbore, S.; Vincent, G. doi  openurl
  Title Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.  
  Volume 125 Issue 8 Pages e2020JG005677  
  Keywords Amazon; drought; ecosystem modeling; evapotranspiration; forest degradation; remote sensing; carbon cycle; deforestation; dry season; evapotranspiration; hydrological cycle; logging (timber); net primary production; remote sensing; sensible heat flux; tropical forest; understory; water stress; Amazon River  
  Abstract Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems. ©2020. The Authors.  
  Address AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 21698953 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 957  
Permanent link to this record
 

 
Author Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; Isaac, P.; Polidori, D.; Ribeca, A.; van Ingen, C.; Zhang, L.; Amiro, B.; Ammann, C.; Arain, M.A.; Ardö, J.; Arkebauer, T.; Arndt, S.K.; Arriga, N.; Aubinet, M.; Aurela, M.; Baldocchi, D.; Barr, A.; Beamesderfer, E.; Marchesini, L.B.; Bergeron, O.; Beringer, J.; Bernhofer, C.; Berveiller, D.; Billesbach, D.; Black, T.A.; Blanken, P.D.; Bohrer, G.; Boike, J.; Bolstad, P.V.; Bonal, D.; Bonnefond, J.-M.; Bowling, D.R.; Bracho, R.; Brodeur, J.; Brümmer, C.; Buchmann, N.; Burban, B.; Burns, S.P.; Buysse, P.; Cale, P.; Cavagna, M.; Cellier, P.; Chen, S.; Chini, I.; Christensen, T.R.; Cleverly, J.; Collalti, A.; Consalvo, C.; Cook, B.D.; Cook, D.; Coursolle, C.; Cremonese, E.; Curtis, P.S.; D'Andrea, E.; da Rocha, H.; Dai, X.; Davis, K.J.; De Cinti, B.; de Grandcourt, A.; De Ligne, A.; De Oliveira, R.C.; Delpierre, N.; Desai, A.R.; Di Bella, C.M.; di Tommasi, P.; Dolman, H.; Domingo, F.; Dong, G.; Dore, S.; Duce, P.; Dufrêne, E.; Dunn, A.; Dušek, J.; Eamus, D.; Eichelmann, U.; ElKhidir, H.A.M.; Eugster, W.; Ewenz, C.M.; Ewers, B.; Famulari, D.; Fares, S.; Feigenwinter, I.; Feitz, A.; Fensholt, R.; Filippa, G.; Fischer, M.; Frank, J.; Galvagno, M.; Gharun, M.; Gianelle, D.; Gielen, B.; Gioli, B.; Gitelson, A.; Goded, I.; Goeckede, M.; Goldstein, A.H.; Gough, C.M.; Goulden, M.L.; Graf, A.; Griebel, A.; Gruening, C.; Grünwald, T.; Hammerle, A.; Han, S.; Han, X.; Hansen, B.U.; Hanson, C.; Hatakka, J.; He, Y.; Hehn, M.; Heinesch, B.; Hinko-Najera, N.; Hörtnagl, L.; Hutley, L.; Ibrom, A.; Ikawa, H.; Jackowicz-Korczynski, M.; Janouš, D.; Jans, W.; Jassal, R.; Jiang, S.; Kato, T.; Khomik, M.; Klatt, J.; Knohl, A.; Knox, S.; Kobayashi, H.; Koerber, G.; Kolle, O.; Kosugi, Y.; Kotani, A.; Kowalski, A.; Kruijt, B.; Kurbatova, J.; Kutsch, W.L.; Kwon, H.; Launiainen, S.; Laurila, T.; Law, B.; Leuning, R.; Li, Y.; Liddell, M.; Limousin, J.-M.; Lion, M.; Liska, A.J.; Lohila, A.; López-Ballesteros, A.; López-Blanco, E.; Loubet, B.; Loustau, D.; Lucas-Moffat, A.; Lüers, J.; Ma, S.; Macfarlane, C.; Magliulo, V.; Maier, R.; Mammarella, I.; Manca, G.; Marcolla, B.; Margolis, H.A.; Marras, S.; Massman, W.; Mastepanov, M.; Matamala, R.; Matthes, J.H.; Mazzenga, F.; McCaughey, H.; McHugh, I.; McMillan, A.M.S.; Merbold, L.; Meyer, W.; Meyers, T.; Miller, S.D.; Minerbi, S.; Moderow, U.; Monson, R.K.; Montagnani, L.; Moore, C.E.; Moors, E.; Moreaux, V.; Moureaux, C.; Munger, J.W.; Nakai, T.; Neirynck, J.; Nesic, Z.; Nicolini, G.; Noormets, A.; Northwood, M.; Nosetto, M.; Nouvellon, Y.; Novick, K.; Oechel, W.; Olesen, J.E.; Ourcival, J.-M.; Papuga, S.A.; Parmentier, F.-J.; Paul-Limoges, E.; Pavelka, M.; Peichl, M.; Pendall, E.; Phillips, R.P.; Pilegaard, K.; Pirk, N.; Posse, G.; Powell, T.; Prasse, H.; Prober, S.M.; Rambal, S.; Rannik, Ü.; Raz-Yaseef, N.; Reed, D.; de Dios, V.R.; Restrepo-Coupe, N.; Reverter, B.R.; Roland, M.; Sabbatini, S.; Sachs, T.; Saleska, S.R.; Sánchez-Cañete, E.P.; Sanchez-Mejia, Z.M.; Schmid, H.P.; Schmidt, M.; Schneider, K.; Schrader, F.; Schroder, I.; Scott, R.L.; Sedlák, P.; Serrano-Ortíz, P.; Shao, C.; Shi, P.; Shironya, I.; Siebicke, L.; Šigut, L.; Silberstein, R.; Sirca, C.; Spano, D.; Steinbrecher, R.; Stevens, R.M.; Sturtevant, C.; Suyker, A.; Tagesson, T.; Takanashi, S.; Tang, Y.; Tapper, N.; Thom, J.; Tiedemann, F.; Tomassucci, M.; Tuovinen, J.-P.; Urbanski, S.; Valentini, R.; van der Molen, M.; van Gorsel, E.; van Huissteden, K.; Varlagin, A.; Verfaillie, J.; Vesala, T.; Vincke, C.; Vitale, D.; Vygodskaya, N.; Walker, J.P.; Walter-Shea, E.; Wang, H.; Weber, R.; Westermann, S.; Wille, C.; Wofsy, S.; Wohlfahrt, G.; Wolf, S.; Woodgate, W.; Li, Y.; Zampedri, R.; Zhang, J.; Zhou, G.; Zona, D.; Agarwal, D.; Biraud, S.; Torn, M.; Papale, D. doi  openurl
  Title The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data Type Journal Article
  Year 2020 Publication Scientific data Abbreviated Journal Sci Data  
  Volume 7 Issue 1 Pages 225  
  Keywords article; breathing; ecophysiology; ecosystem; Eddy covariance; licence; metadata; photosynthesis; pipeline; remote sensing; time series analysis; uncertainty  
  Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.  
  Address Euro-Mediterranean Centre on Climate Change Foundation (CMCC), Lecce, 73100, Italy  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 20524463 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 958  
Permanent link to this record
 

 
Author Donald, J.; Maxfield, P.; Leroy, C.; Ellwood, M.D.F. doi  openurl
  Title Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition Type Journal Article
  Year 2020 Publication Acta Oecologica Abbreviated Journal Acta Oecol.  
  Volume 106 Issue Pages  
  Keywords Asplenium; Bacteria; Borneo; Bromeliaceae; Canopy; French Guiana; Fungi; Plfa; Rainforest; bacterium; community composition; epiphyte; fungus; microbial community; niche; relative abundance; soil microorganism; species diversity; tropical forest; Amazonia; Borneo; Danum Valley; East Malaysia; French Guiana; Malaysia; Nouragues; Sabah; Asplenium; Asplenium nidus; Aves; Bacteria (microorganisms); Bromeliaceae; Fungi  
  Abstract Microbial organisms support the high species diversity associated with tropical forests, and likely drive functional processes, but microorganisms found in rainforest canopies are not well understood. We quantified the microbial diversity of suspended soils from two classical epiphytic model systems (bromeliads & bird's nest ferns) across two localities: the Nouragues Reserve in French Guiana and Danum Valley in Malaysian Borneo. Non-epiphytic suspended soils were also collected as controls at the Nouragues Reserve. Effects of epiphyte type and sample location on microbial community composition were determined using Phospholipid Fatty Acid (PLFA) analysis. Total microbial biomass remained constant across the suspended soil types, but PLFA peaks denoting the relative abundance of different microbes varied between bromeliads, bird's nest ferns and non-epiphytic control soils. Suspended soils associated with bird's nest ferns from Borneo contained a microbial community significantly different in composition from those of congeneric bird's nest ferns from Amazonia, due to shifts in the relative abundance of fungi and bacteria. Our findings reveal that epiphytes create convergent niches for microorganisms in tropical canopies, while highlighting the sensitive nature of suspended soil microbial communities. © 2020 Elsevier Masson SAS  
  Address 20 Baily Place, Cheswick, Bristol, BS16 1BG, United Kingdom  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1146609x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 959  
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
  Year 2020 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 4 Pages 608-615  
  Keywords branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae  
  Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation  
  Address UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 960  
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Azémar, F.; Dumont, Y.; Leroy, C. doi  openurl
  Title Impacts of biotic and abiotic parameters on immature populations of Aedes aegypti Type Journal Article
  Year 2020 Publication Journal of Pest Science Abbreviated Journal J. Pest Sci.  
  Volume 93 Issue 3 Pages 941-952  
  Keywords Biocontrol agents; Competition; Ecosystem services; Mosquito control; Mosquito management; Predation; abiotic factor; biotic factor; competitive displacement; disease vector; maturation; mosquito; pest control; Aedes aegypti; Hexapoda; Zika virus  
  Abstract In recent centuries, the mosquito Aedes aegypti has spread into most urban areas throughout the tropics. This species is considered the main vector of the chikungunya, dengue, yellow fever and Zika viruses and causes major public health issues. The aim of this study is to investigate the relative influence of biotic and abiotic parameters on immature populations of Ae. aegypti. During a one-year-long field experiment, we monitored 108 macroinvertebrate aquatic communities inhabiting four types of water containers across three different urbanized sites in a Neotropical city. A multimodel inference approach revealed that, in addition to abiotic parameters, biotic interactions with aquatic organisms had an important influence on the abundance of Ae. aegypti and that the urbanized site considered influences the outcomes of the interactions. Controphic species other than mosquitoes aided Ae. aegypti development, suggesting a mechanism of facilitation through a chain of processes. However, the abundance of Ae. aegypti was lowered by competition with native mosquito species in the slightly urbanized area and by predation in more urbanized areas. Competitive displacement and reduction, as well as predation by native aquatic organisms, can be considered a form of ecosystem service. The conservation and/or augmentation of natural enemies should improve the short- and long-term success of incompatible and/or sterile insect techniques, thus opening up perspectives for the future of mosquito management. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 16124758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 962  
Permanent link to this record
 

 
Author Binelli, G.; Montaigne, W.; Sabatier, D.; Scotti-Saintagne, C.; Scotti, I. doi  openurl
  Title Discrepancies between genetic and ecological divergence patterns suggest a complex biogeographic history in a Neotropical genus Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 10 Issue 11 Pages 4726-4738  
  Keywords allopatric divergence; Amazon; Guiana Shield; interspecific gene flow; Myristicaceae; secondary contact; Virola  
  Abstract Phylogenetic patterns and the underlying speciation processes can be deduced from morphological, functional, and ecological patterns of species similarity and divergence. In some cases, though, species retain multiple similarities and remain almost indistinguishable; in other cases, evolutionary convergence can make such patterns misleading; very often in such cases, the “true” picture only emerges from carefully built molecular phylogenies, which may come with major surprises. In addition, closely related species may experience gene flow after divergence, thus potentially blurring species delimitation. By means of advanced inferential methods, we studied molecular divergence between species of the Virola genus (Myristicaceae): widespread Virola michelii and recently described, endemic V. kwatae, using widespread V. surinamensis as a more distantly related outgroup with different ecology and morphology—although with overlapping range. Contrary to expectations, we found that the latter, and not V. michelii, was sister to V. kwatae. Therefore, V. kwatae probably diverged from V. surinamensis through a recent morphological and ecological shift, which brought it close to distantly related V. michelii. Through the modeling of the divergence process, we inferred that gene flow between V. surinamensis and V. kwatae stopped soon after their divergence and resumed later, in a classical secondary contact event which did not erase their ecological and morphological differences. While we cannot exclude that initial divergence occurred in allopatry, current species distribution and the absence of geographical barriers make complete isolation during speciation unlikely. We tentatively conclude that (a) it is possible that divergence occurred in allopatry/parapatry and (b) secondary contact did not suppress divergence. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.  
  Address INRAE, URFM, Avignon, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 963  
Permanent link to this record
 

 
Author Van Langenhove, L.; Verryckt, L.T.; Bréchet, L.; Courtois, E.A.; Stahl, C.; Hofhansl, F.; Bauters, M.; Sardans, J.; Boeckx, P.; Fransen, E.; Peñuelas, J.; Janssens, I.A. doi  openurl
  Title Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests Type Journal Article
  Year 2020 Publication Biogeochemistry Abbreviated Journal Biogeochemistry  
  Volume 149 Issue 2 Pages 175-193  
  Keywords Litterfall; Nitrogen; Nutrient cycling; Phosphorus; Potassium; Throughfall; atmospheric deposition; canopy exchange; field method; forest floor; leaching; litterfall; nutrient cycling; phosphorus; potassium; precipitation (climatology); rainforest; tropical forest; French Guiana  
  Abstract Atmospheric deposition is an important component of the nutrient cycles of terrestrial ecosystems, but field measurements are especially scarce in tropical regions. In this study we analysed 15 months of precipitation chemistry collected in an old growth tropical forest located in French Guiana. We measured nutrient inputs via bulk precipitation and throughfall and used the canopy budget model to estimate nutrient fluxes via canopy exchange and dry deposition. Based on this method we quantified net fluxes of macronutrients and compared their contribution to internal cycling rates via litterfall. Our results suggest that while atmospheric deposition of nitrogen was relatively high (13 kg ha−1 year−1), and mainly in organic forms, the N inputs via litterfall were an order of magnitude higher. In contrast to nitrogen, we found that atmospheric deposition of phosphorus (0.5 kg ha−1 year−1) supplied up to one third of the annual litterfall input to the forest floor. Most strikingly, combined annual inputs of potassium via atmospheric deposition (14 kg ha−1 year−1) and canopy leaching (22 kg ha−1 year−1) were three times larger than internal nutrient recycling via litterfall (11 kg ha−1 year−1). We conclude that atmospheric deposition of phosphorus and especially potassium may play an important role in sustaining the productivity of this old-growth tropical rainforest. © 2020, Springer Nature Switzerland AG.  
  Address StatUa Center for Statistics, University of Antwerp, Prinsstraat 13, Antwerp, 2000, Belgium  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 01682563 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 964  
Permanent link to this record
 

 
Author Honorio Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Gomero, D.A.; del Castillo Torres, D.; Llampazo, G.F.; Pizango, G.H.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Carvalho, C.; de Lima, H.C.; Cardoso, D.; Degen, B. doi  openurl
  Title SNP markers as a successful molecular tool for assessing species identity and geographic origin of trees in the economically important South American legume genus Dipteryx Type Journal Article
  Year 2020 Publication Journal of Heredity Abbreviated Journal J. Hered.  
  Volume 111 Issue 4 Pages 346-356  
  Keywords Cumaru; Genetic assignment; Leguminosae; Timber verification; article; chloroplast; genetic association; genetic marker; geographic origin; indel mutation; nonhuman; single nucleotide polymorphism; species identification; structure analysis; tonka bean; Dipteryx; Fabaceae  
  Abstract Dipteryx timber has been heavily exploited in South America since 2000s due to the increasing international demand for hardwood. Developing tools for the genetic identification of Dipteryx species and their geographical origin can help to promote legal trading of timber. A collection of 800 individual trees, belonging to 6 different Dipteryx species, was genotyped based on 171 molecular markers. After the exclusion of markers out of Hardy-Weinberg equilibrium or with no polymorphism or low amplification, 83 nuclear, 29 chloroplast, 13 mitochondrial single nucleotide polymorphisms (SNPs), and 2 chloroplast and 5 mitochondrial INDELS remained. Six genetic groups were identified using Bayesian Structure analyses of the nuclear SNPs, which corresponded to the different Dipteryx species collected in the field. Seventeen highly informative markers were identified as suitable for species identification and obtained self-assignment success rates to species level of 78-96%. An additional set of 15 molecular markers was selected to determine the different genetic clusters found in Dipteryx odorata and Dipteryx ferrea, obtaining self-assignment success rates of 91-100%. The success to assign samples to the correct country of origin using all or only the informative markers improved when using the nearest neighbor approach (69-92%) compared to the Bayesian approach (33-80%). While nuclear and chloroplast SNPs were more suitable for differentiating the different Dipteryx species, mitochondrial SNPs were ideal for determining the genetic clusters of D. odorata and D. ferrea. These 32 selected SNPs will be invaluable genetic tools for the accurate identification of species and country of origin of Dipteryx timber. © The American Genetic Association 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com  
  Address Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, Salvador, BA, 40170-115, Brazil  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 00221503 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 965  
Permanent link to this record
 

 
Author Schimann, H.; Vleminckx, J.; Baraloto, C.; Engel, J.; Jaouen, G.; Louisanna, E.; Manzi, S.; Sagne, A.; Roy, M. doi  openurl
  Title Tree communities and soil properties influence fungal community assembly in neotropical forests Type Journal Article
  Year 2020 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 3 Pages 444-456  
  Keywords communities; composition; diversity; habitat; lowland neotropical rain forest; macrofungi; soil properties; trees; ectomycorrhiza; fungus; heterogeneity; Neotropical Region; physicochemical property; rainforest; species inventory; species richness; tree; tropical forest; French Guiana; Agaricales; Aphyllophorales; Basidiomycota  
  Abstract The influence exerted by tree communities, topography, and soil chemistry on the assembly of macrofungal communities remains poorly understood, especially in highly diverse tropical forests. Here, we used a large dataset that combines inventories of macrofungal Basidiomycetes fruiting bodies, tree species composition, and measurements for 16 soil physicochemical parameters, collected in 34 plots located in four sites of lowland rain forests in French Guiana. Plots were established on three different topographical conditions: hilltop, slope, and seasonally flooded soils. We found hyperdiverse Basidiomycetes communities, mainly comprising members of Agaricales and Polyporales. Phosphorus, clay contents, and base saturation in soils strongly varied across plots and shaped the richness and composition of tree communities. The latter composition explained 23% of the variation in the composition of macrofungal communities, probably through high heterogeneity of the litter chemistry and selective effects of biotic interactions. The high local heterogeneity of habitats influenced the distribution of both macrofungi and trees, as a result of diversed local soil hydromorphic conditions associated with contrasting soil chemistry. This first regional study across habitats of French Guiana forests revealed new niches for macrofungi, such as ectomycorrhizal ones, and illustrates how macrofungi inventories are still paramount to can be to understand the processes at work in the tropics. Abstract in Spanish is available with online material. © 2020 The Association for Tropical Biology and Conservation  
  Address Laboratoire Évolution et Diversité Biologique, CNRS, UMR 5174 UPS CNRS ENFA IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 968  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: