toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Franco, W.; Ladino, N.;Delabie, J.H.C.;Dejean, A.;Orivel, J.;Fichaux, M.; Groc, S.;Leponce, M.;Feitosa, R.M. doi  openurl
  Title First checklist of the ants (Hymenoptera: Formicidae) of French Guiana Type Journal Article
  Year 2019 Publication Zootaxa Abbreviated Journal  
  Volume 4674 Issue 5 Pages 509-543  
  Keywords  
  Abstract We provide here a checklist of the ants of French Guiana, an overseas department of France situated in northern South America, with a very low human population density and predominantly covered by old-growth tropical rainforests. Based on 165 scientific papers, specimens deposited in collections, and unpublished surveys, a total of 659 valid species and subspecies from 84 genera and 12 subfamilies is presented. Although far from complete, these numbers represent approximately 10% of the ant diversity known to occur in the Neotropical realm. Additionally, three ant genera and 119 species are reported for the first time for French Guiana. Finally, five species are recognized as erroneous records for the the department in the literature. This checklist significantly expands the basic knowledge of the ants in the Guiana Shield, one of the world’s most important biodiversity hotspots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 886  
Permanent link to this record
 

 
Author Ter Steege, H.; Henkel, T.W.; Helal, N.; Marimon, B.S.; Marimon-Junior, B.H.; Huth, A.; Groeneveld, J.; Sabatier, D.; Coelho, L.S.; Filho, D.A.L.; Salomão, R.P.; Amaral, I.L.; Matos, F.D.A.; Castilho, C.V.; Phillips, O.L.; Guevara, J.E.; Carim, M.J.V.; Cárdenas López, D.; Magnusson, W.E.; Wittmann, F.; Irume, M.V.; Martins, M.P.; Guimarães, J.R.D.S.; Molino, J.-F.; Bánki, O.S.; Piedade, M.T.F.; Pitman, N.C.A.; Mendoza, A.M.; Ramos, J.F.; Luize, B.G.; Moraes de Leão Novo, E.M.; Núñez Vargas, P.; Silva, T.S.F.; Venticinque, E.M.; Manzatto, A.G.; Reis, N.F.C.; Terborgh, J.; Casula, K.R.; Honorio Coronado, E.N.; Montero, J.C.; Feldpausch, T.R.; Duque, A.; Costa, F.R.C.; Arboleda, N.C.; Schöngart, J.; Killeen, T.J.; Vasquez, R.; Mostacedo, B.; Demarchi, L.O.; Assis, R.L.; Baraloto, C.; Engel, J.; Petronelli, P.; Castellanos, H.; de Medeiros, M.B.; Quaresma, A.; Simon, M.F.; Andrade, A.; Camargo, J.L.; Laurance, S.G.W.; Laurance, W.F.; Rincón, L.M.; Schietti, J.; Sousa, T.R.; de Sousa Farias, E.; Lopes, M.A.; Magalhães, J.L.L.; Mendonça Nascimento, H.E.; Lima de Queiroz, H.; Aymard C, G.A.; Brienen, R.; Revilla, J.D.C.; Vieira, I.C.G.; Cintra, B.B.L.; Stevenson, P.R.; Feitosa, Y.O.; Duivenvoorden, J.F.; Mogollón, H.F.; Araujo-Murakami, A.; Ferreira, L.V.; Lozada, J.R.; Comiskey, J.A.; de Toledo, J.J.; Damasco, G.; Dávila, N.; Draper, F.; García-Villacorta, R.; Lopes, A.; Vicentini, A.; Alonso, A.; Dallmeier, F.; Gomes, V.H.F.; Lloyd, J.; Neill, D.; de Aguiar, D.P.P.; Arroyo, L.; Carvalho, F.A.; de Souza, F.C.; do Amaral, D.D.; Feeley, K.J.; Gribel, R.; Pansonato, M.P.; Barlow, J.; Berenguer, E.; Ferreira, J.; Fine, P.V.A.; Guedes, M.C.; Jimenez, E.M.; Licona, J.C.; Peñuela Mora, M.C.; Villa, B.; Cerón, C.; Maas, P.; Silveira, M.; Stropp, J.; Thomas, R.; Baker, T.R.; Daly, D.; Dexter, K.G.; Huamantupa-Chuquimaco, I.; Milliken, W.; Pennington, T.; Ríos Paredes, M.; Fuentes, A.; Klitgaard, B.; Pena, J.L.M.; Peres, C.A.; Silman, M.R.; Tello, J.S.; Chave, J.; Cornejo Valverde, F.; Di Fiore, A.; Hilário, R.R.; Phillips, J.F.; Rivas-Torres, G.; van Andel, T.R.; von Hildebrand, P.; Noronha, J.C.; Barbosa, E.M.; Barbosa, F.R.; de Matos Bonates, L.C.; Carpanedo, R.S.; Dávila Doza, H.P.; Fonty, É.; GómeZárate Z, R.; Gonzales, T.; Gallardo Gonzales, G.P.; Hoffman, B.; Junqueira, A.B.; Malhi, Y.; Miranda, I.P.A.; Pinto, L.F.M.; Prieto, A.; Rodrigues, D.J.; Rudas, A.; Ruschel, A.R.; Silva, N.; Vela, C.I.A.; Vos, V.A.; Zent, E.L.; Zent, S.; Weiss Albuquerque, B.; Cano, A.; Carrero Márquez, Y.A.; Correa, D.F.; Costa, J.B.P.; Flores, B.M.; Galbraith, D.; Holmgren, M.; Kalamandeen, M.; Nascimento, M.T.; Oliveira, A.A.; Ramirez-Angulo, H.; Rocha, M.; Scudeller, V.V.; Sierra, R.; Tirado, M.; Umaña Medina, M.N.; van der Heijden, G.; Vilanova Torre, E.; Vriesendorp, C.; Wang, O.; Young, K.R.; Ahuite Reategui, M.A.; Baider, C.; Balslev, H.; Cárdenas, S.; Casas, L.F.; Farfan-Rios, W.; Ferreira, C.; Linares-Palomino, R.; Mendoza, C.; Mesones, I.; Torres-Lezama, A.; Giraldo, L.E.U.; Villarroel, D.; Zagt, R.; Alexiades, M.N.; de Oliveira, E.A.; Garcia-Cabrera, K.; Hernandez, L.; Palacios Cuenca, W.; Pansini, S.; Pauletto, D.; Ramirez Arevalo, F.; Sampaio, A.F.; Sandoval, E.H.V.; Valenzuela Gamarra, L.; Levesley, A.; Pickavance, G.; Melgaço, K. pdf  url
doi  openurl
  Title Rarity of monodominance in hyperdiverse Amazonian forests Type Journal Article
  Year 2019 Publication Scientific reports Abbreviated Journal Scientific reports  
  Volume 9 Issue 1 Pages 13822  
  Keywords  
  Abstract Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees over 10cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.  
  Address Department of Biology, University of Missouri, St. Louis, MO, 63121, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 October 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 887  
Permanent link to this record
 

 
Author Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Herault, B.; Labrière, N.; Hofhansl, F.; Affum-Baffoe, K.; Aleinikov, A.; Alonso, A.; Amani, C.; Araujo-Murakami, A.; Armston, J.; Arroyo, L.; Ascarrunz, N.; Azevedo, C.; Baker, T.; Bałazy, R.; Bedeau, C.; Berry, N.; Bilous, A.M.; Bilous, S.Y.; Bissiengou, P.; Blanc, L.; Bobkova, K.S.; Braslavskaya, T.; Brienen, R.; Burslem, D.F.R.P.; Condit, R.; Cuni-Sanchez, A.; Danilina, D.; Del Castillo Torres, D.; Derroire, G.; Descroix, L.; Sotta, E.D.; d'Oliveira, M.V.N.; Dresel, C.; Erwin, T.; Evdokimenko, M.D.; Falck, J.; Feldpausch, T.R.; Foli, E.G.; Foster, R.; Fritz, S.; Garcia-Abril, A.D.; Gornov, A.; Gornova, M.; Gothard-Bassébé, E.; Gourlet-Fleury, S.; Guedes, M.; Hamer, K.C.; Susanty, F.H.; Higuchi, N.; Coronado, E.N.H.; Hubau, W.; Hubbell, S.; Ilstedt, U.; Ivanov, V.V.; Kanashiro, M.; Karlsson, A.; Karminov, V.N.; Killeen, T.; Koffi, J.-C.K.; Konovalova, M.; Kraxner, F.; Krejza, J.; Krisnawati, H.; Krivobokov, L.V.; Kuznetsov, M.A.; Lakyda, I.; Lakyda, P.I.; Licona, J.C.; Lucas, R.M.; Lukina, N.; Lussetti, D.; Malhi, Y.; Manzanera, J.A.; Marimon, B.; Junior, B.H.M.; Martinez, R.V.; Martynenko, O.V.; Matsala, M.; Matyashuk, R.K.; Mazzei, L.; Memiaghe, H.; Mendoza, C.; Mendoza, A.M.; Moroziuk, O.V.; Mukhortova, L.; Musa, S.; Nazimova, D.I.; Okuda, T.; Oliveira, L.C.; Ontikov, P.V.; Osipov, A.F.; Pietsch, S.; Playfair, M.; Poulsen, J.; Radchenko, V.G.; Rodney, K.; Rozak, A.H.; Ruschel, A.; Rutishauser, E.; See, L.; Shchepashchenko, M.; Shevchenko, N.; Shvidenko, A.; Silveira, M.; Singh, J.; Sonké, B.; Souza, C.; Stereńczak, K.; Stonozhenko, L.; Sullivan, M.J.P.; Szatniewska, J.; Taedoumg, H.; Ter Steege, H.; Tikhonova, E.; Toledo, M.; Trefilova, O.V.; Valbuena, R.; Gamarra, L.V.; Vasiliev, S.; Vedrova, E.F.; Verhovets, S.V.; Vidal, E.; Vladimirova, N.A.; Vleminckx, J.; Vos, V.A.; Vozmitel, F.K.; Wanek, W.; West, T.A.P.; Woell, H.; Woods, J.T.; Wortel, V.; Yamada, T.; Nur Hajar, Z.S.; Zo-Bi, I.C. pdf  url
doi  openurl
  Title The Forest Observation System, building a global reference dataset for remote sensing of forest biomass Type Journal Article
  Year 2019 Publication Scientific data Abbreviated Journal  
  Volume 6 Issue 198 Pages  
  Keywords  
  Abstract Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.  
  Address FRIM Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Kuala Lumpur, Malaysia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 889  
Permanent link to this record
 

 
Author Longo, M.; Knox, R.G.; Levine, N.M.; Swann, A.L.S.; Medvigy, D.M.; Dietze, M.C.; Kim, Y.; Zhang, K.; Bonal, D.; Burban, B.; Camargo, P.B.; Hayek, M.N.; Saleska, S.R.; Da Silva, R.; Bras, R.L.; Wofsy, S.C.; Moorcroft, P.R. pdf  url
doi  openurl
  Title The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-Part 2: Model evaluation for tropical South America Type Journal Article
  Year 2019 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.  
  Volume 12 Issue 10 Pages 4347-4374  
  Keywords  
  Abstract The Ecosystem Demography model version 2.2 (ED-2.2) is a terrestrial biosphere model that simulates the biophysical, ecological, and biogeochemical dynamics of vertically and horizontally heterogeneous terrestrial ecosystems. In a companion paper (Longo et al., 2019a), we described how the model solves the energy, water, and carbon cycles, and verified the high degree of conservation of these properties in long-term simulations that include long-term (multi-decadal) vegetation dynamics. Here, we present a detailed assessment of the model's ability to represent multiple processes associated with the biophysical and biogeochemical cycles in Amazon forests. We use multiple measurements from eddy covariance towers, forest inventory plots, and regional remote-sensing products to assess the model's ability to represent biophysical, physiological, and ecological processes at multiple timescales, ranging from subdaily to century long. The ED-2.2 model accurately describes the vertical distribution of light, water fluxes, and the storage of water, energy, and carbon in the canopy air space, the regional distribution of biomass in tropical South America, and the variability of biomass as a function of environmental drivers. In addition, ED-2.2 qualitatively captures several emergent properties of the ecosystem found in observations, specifically observed relationships between aboveground biomass, mortality rates, and wood density; however, the slopes of these relationships were not accurately captured. We also identified several limitations, including the model's tendency to overestimate the magnitude and seasonality of heterotrophic respiration and to overestimate growth rates in a nutrient-poor tropical site. The evaluation presented here highlights the potential of incorporating structural and functional heterogeneity within biomes in Earth system models (ESMs) and to realistically represent their impacts on energy, water, and carbon cycles. We also identify several priorities for further model development.  
  Address Georgia Institute of Technology, Atlanta, GA, United States  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991959x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 27 October 2019; Correspondence Address: Longo, M.; Harvard UniversityUnited States; email: mdplongo@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 890  
Permanent link to this record
 

 
Author Jaouen, G.; Sagne, A.; Buyck, B.; Decock, C.; Louisanna, E.; Manzi, S.; Baraloto, C.; Roy, M.; Schimann, H. pdf  url
doi  openurl
  Title Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset Type Journal Article
  Year 2019 Publication Scientific data Abbreviated Journal  
  Volume 6 Issue 206 Pages  
  Keywords  
  Abstract In Amazonia, the knowledge about Fungi remains patchy and biased towards accessible sites. This is particularly the case in French Guiana where the existing collections have been confined to few coastal localities. Here, we aimed at filling the gaps of knowledge in undersampled areas of this region, particularly focusing on the Basidiomycota. From 2011, we comprehensively collected fruiting-bodies with a stratified and reproducible sampling scheme in 126 plots. Sites of sampling reflected the main forest habitats of French Guiana in terms of soil fertility and topography. The dataset of 5219 specimens gathers 245 genera belonging to 75 families, 642 specimens are barcoded. The dataset is not a checklist as only 27% of the specimens are identified at the species level but 96% are identified at the genus level. We found an extraordinary diversity distributed across forest habitats. The dataset is an unprecedented and original collection of Basidiomycota for the region, making specimens available for taxonomists and ecologists. The database is publicly available in the GBIF repository ( https://doi.org/10.15468/ymvlrp ).  
  Address Department of Biological Science, Florida International University, FL, Miami, 33199, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 October 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 891  
Permanent link to this record
 

 
Author Sprenger, P.P.; Hartke, J.; Feldmeyer, B.; Orivel, J.; Schmitt, T.; Menzel, F. url  doi
openurl 
  Title Influence of Mutualistic Lifestyle, Mutualistic Partner, and Climate on Cuticular Hydrocarbon Profiles in Parabiotic Ants Type Journal Article
  Year 2019 Publication Journal of Chemical Ecology Abbreviated Journal J Chem Ecol  
  Volume 45 Issue 9 Pages 741-754  
  Keywords  
  Abstract A vital trait in insects is their cuticular hydrocarbon (CHC) profile, which protects the insect against desiccation and serves in chemical communication. Due to these functions, CHC profiles are shaped by both climatic conditions and biotic interactions. Here, we investigated CHC differentiation in the neotropical parabiotic ant species Crematogaster levior and Camponotus femoratus, which mutualistically share a nest. Both consist of two cryptic species each (Cr. levior A and B and Ca. femoratus PAT and PS) that differ genetically and possess strongly different CHC profiles. We characterized and compared CHC profiles of the four cryptic species in detail. Our results suggest that Cr. levior A, Ca. femoratus PAT and Ca. femoratus PS adapted their CHC profiles to the parabiotic lifestyle by producing longer-chain CHCs. At the same time, they changed their major CHC classes, and produce more alkadienes and methyl-branched alkenes compared to Cr. levior B or non-parabiotic species. The CHC profiles of Cr. levior B were more similar to related, non-parabiotic species of the Orthocrema clade than Cr. levior A, and the chain lengths of B were similar to the reconstructed ancestral state. Signals of both the parabiotic partner (biotic conditions) and climate (abiotic conditions) were found in the CHC profiles of all four cryptic species. Our data suggest that mutualisms shaped the CHC profiles of the studied species, in particular chain length and CHC class composition. Beside this, signals of the parabiotic partners indicate potential impacts of biotic interactions, via chemical mimicry or chemical camouflage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-1561 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Sprenger2019 Serial (up) 894  
Permanent link to this record
 

 
Author Ruiz-González, M.X.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Carrión, A.D.A.; Orivel, J. pdf  url
doi  openurl
  Title Do host plant and associated ant species affect microbial communities in myrmecophytes? Type Journal Article
  Year 2019 Publication Insects Abbreviated Journal Insects  
  Volume 10 Issue 11 Pages 391  
  Keywords Allomerus decemarticulatus; Allomerus octoarticulatus; Azteca sp; Cf; Cordia nodosa; Depilis; Domatia; Hirtella physophora; Microbial diversity  
  Abstract Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.  
  Address Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning, Guangxi 530005, China  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20754450 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 November 2019; Correspondence Address: Ruiz-González, M.X.; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Ecuador; email: marioxruizgonzalez@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 896  
Permanent link to this record
 

 
Author Bréchet, L.; Courtois, E.A.; Saint-Germain, T.; Janssens, I.A.; Asensio, D.; Ramirez-Rojas, I.; Soong, J.L.; Van Langenhove, L.; Verbruggen, E.; Stahl, C. pdf  url
doi  openurl
  Title Disentangling Drought and Nutrient Effects on Soil Carbon Dioxide and Methane Fluxes in a Tropical Forest Type Journal Article
  Year 2019 Publication Frontiers in Environmental Science Abbreviated Journal Front. Environ. Sci.  
  Volume 7 Issue 180 Pages  
  Keywords carbon dioxide; drought; fertilization; methane; nitrogen; phosphorus; soil GHG fluxes; tropical forest  
  Abstract Tropical soils are a major contributor to the balance of greenhouse gas (GHG) fluxes in the atmosphere. Models of tropical GHG fluxes predict that both the frequency of drought events and changes in atmospheric deposition of nitrogen (N) will significantly affect dynamics of soil carbon dioxide (CO2) and methane (CH4) production and consumption. In this study, we examined the combined effect of a reduction in precipitation and an increase in nutrient availability on soil CO2 and CH4 fluxes in a primary French Guiana tropical forest. Drought conditions were simulated by intercepting precipitation falling through the forest canopy with tarpaulin roofs. Nutrient availability was manipulated through application of granular N and/or phosphorus (P) fertilizer to the soil. Soil water content (SWC) below the roofs decreased rapidly and stayed at continuously low values until roof removal, which as a consequence roughly doubled the duration of the dry season. After roof removal, SWC slowly increased but remained lower than in the control soils even after 2.5 months of wet-season precipitation. We showed that drought-imposed reduction in SWC decreased the CO2 emissions (i.e., CO2 efflux), but strongly increased the CH4 emissions. N, P, and N × P (i.e., NP) additions all significantly increased CO2 emission but had no effect on CH4 fluxes. In treatments where both fertilization and drought were applied, the positive effect of N, P, and NP fertilization on CO2 efflux was reduced. After roof removal, soil CO2 efflux was more resilient in the control plots than in the fertilized plots while there was only a modest effect of roof removal on soil CH4 fluxes. Our results suggest that a combined increase in drought and nutrient availability in soil can locally increase the emissions of both CO2 and CH4 from tropical soils, for a long term.  
  Address Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA, United States  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296665x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 December 2019; Correspondence Address: Bréchet, L.; Centre of Excellence PLECO (Plant and Ecosystems), Department of Biology, University of AntwerpBelgium; email: laeti.brechet@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 899  
Permanent link to this record
 

 
Author Ghislain, B.; Alméras, T.; Prunier, J.; Clair, B. pdf  url
doi  openurl
  Title Contributions of bark and tension wood and role of the G-layer lignification in the gravitropic movements of 21 tropical tree species Type Journal Article
  Year 2019 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 76 Issue 4 Pages 107  
  Keywords Bark; Biomechanics; G-layer; Lignification; Tension wood; Tropical rainforest; Magnoliophyta  
  Abstract Key message: Gravitropic movements in angiosperm woody stems are achieved through the action of bark and/or wood motor, depending on the bark and wood fibre anatomy (with trellis structure or not; with G-layers or not). Bark motor is as efficient as wood motor to recover from tilting in young trees of 21 tropical species. Context: Angiosperm trees produce tension wood to control their orientation through changes in stem curvature. Tension wood is classified into 3 anatomical groups: with unlignified G-layer, with lignified G-layer and without G-layer. Aims: This study aimed at assessing whether this anatomical diversity reflects a diversity in efficiency of gravitropic movement. Methods: The study was conducted on tropical seedling from the three anatomical groups. Seedlings were staked and grown tilted. At the end of the experiment, changes in curvature when releasing the stem from the stake and when removing bark were measured. Three parameters were computed to compare the global efficiency of gravitropism (stem gravitropic efficiency) and the specific efficiency of motor mechanism based on wood (maturation strain of tension wood) and bark (standardized debarking curvature). Results: The maturation strain of tension wood was similar between species with unlignified and lignified G-layer. Species without G-layer exhibited low maturation strain and large debarking curvature, showing they rely on bark for gravitropism. Bark and wood achieved similar motor efficiency. Conclusion: Lignin does not affect the generation of tensile stress in the G-layer. Bark can be as efficient as wood as a motor of gravitropic movements. © 2019, The Author(s).  
  Address Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, 34095, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 900  
Permanent link to this record
 

 
Author Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Levionnois, S.; Cazal, J.; Cochard, H.; Esquivel-Muelbert, A.; Goret, J.-Y.; Heuret, P.; Jaouen, G.; Santiago, L.S.; Bonal, D. url  doi
openurl 
  Title Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought Type Journal Article
  Year 2019 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 76 Issue 4 Pages 115  
  Keywords Amazon rainforest; Embolism resistance; Hydraulic safety margins; Turgor loss point; Water potential  
  Abstract Key message: Abundant Neotropical canopy-tree species are more resistant to drought-induced branch embolism than what is currently admitted. Large hydraulic safety margins protect them from hydraulic failure under actual drought conditions. Context: Xylem vulnerability to embolism, which is associated to survival under extreme drought conditions, is being increasingly studied in the tropics, but data on the risk of hydraulic failure for lowland Neotropical rainforest canopy-tree species, thought to be highly vulnerable, are lacking. Aims: The purpose of this study was to gain more knowledge on species drought-resistance characteristics in branches and leaves and the risk of hydraulic failure of abundant rainforest canopy-tree species during the dry season. Methods: We first assessed the range of branch xylem vulnerability to embolism using the flow-centrifuge technique on 1-m-long sun-exposed branches and evaluated hydraulic safety margins with leaf turgor loss point and midday water potential during normal- and severe-intensity dry seasons for a large set of Amazonian rainforest canopy-tree species. Results: Tree species exhibited a broad range of embolism resistance, with the pressure threshold inducing 50% loss of branch hydraulic conductivity varying from − 1.86 to − 7.63 MPa. Conversely, we found low variability in leaf turgor loss point and dry season midday leaf water potential, and mostly large, positive hydraulic safety margins. Conclusions: Rainforest canopy-tree species growing under elevated mean annual precipitation can have high resistance to embolism and are more resistant than what was previously thought. Thanks to early leaf turgor loss and high embolism resistance, most species have a low risk of hydraulic failure and are well able to withstand normal and even severe dry seasons. © 2019, The Author(s).  
  Address Smithsonian Tropical Research Institute, Balboa, Ancon, Panama  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial (up) 901  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: