toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fang, C.H.; Clair, B.; Gril, J.; Almeras, T. openurl 
  Title Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain Type Journal Article
  Year 2007 Publication Wood Science and Technology Abbreviated Journal Wood Sci. Technol.  
  Volume 41 Issue 8 Pages 659-671  
  Keywords  
  Abstract Transverse drying shrinkage was measured at microscopic and mesoscopic levels in poplar wood characterised by an increasing growth strain (GS), from normal to tension wood. Results show that: (a) the drying shrinkage, measured as a relative thickness decrease, was significantly higher for G-layer (GL) than for the other layers (OL), GL shrinkage was not significantly correlated with GS, and OL shrinkage was negatively correlated with GS. (b) In gelatinous fibre (G-fibre), lumen size increased during drying and this increase was positively related with GS, but in normal wood fibre, lumen size decreased during drying. These findings suggest that GL shrank outwards (i.e., its internal perimeter increases), so that its shrinkage weakly affected the total cell shrinkage and the mesoscopic shrinkage was controlled by the OL shrinkage which shrank inwards (i.e., its external perimeter decreases). (c) Measurements done on 7 x 7 mm(2) thin sections evidenced a negative correlation between transverse shrinkage and GS, significant in T direction but weak in R direction. These observations at both levels allow to discuss the contribution of GL to the mesoscopic shrinkage of tension wood.  
  Address Univ Montpellier 2, Lab Mech & Gene Civil, F-34095 Montpellier, France, Email: fang1979@gmail.com  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-7719 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000250381500003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 155  
Permanent link to this record
 

 
Author Ruelle, J.; Yoshida, M.; Clair, B.; Thibaut, B. openurl 
  Title Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae) Type Journal Article
  Year 2007 Publication Trees-Structure and Function Abbreviated Journal Trees-Struct. Funct.  
  Volume 21 Issue 3 Pages 345-355  
  Keywords tension wood; tropical rainforest species; UV microspectrophotometry; scanning electron microscopy; cellulose microfibril angle  
  Abstract Tension wood of Laetia procera (Poepp.) Eichl. (Flacourtiaceae), a neo-tropical forest species, shows a peculiar secondary wall structure, with an alternance of thick and thin layers, while opposite wood of this species has a typical secondary wall structure (S1 + S2 + S3). Samples for the study of microstructural properties were collected upon the estimation of growth stresses in the living tree, in order to analyze the correlation of the former with the latter. Investigation using optical microscopy, scanning electron microscopy and UV microspectrophotometry allowed the description of the anatomy, ultra-structure and chemistry of this peculiar polylaminate secondary wall. In the thick layers, cellulose microfibril angle is very low (i.e., microfibril orientation is close to fibre axis) and cellulose microfibrils are well organized and parallel to each other. In the thin layers, microfibrils (only observable in the inner layer) are less organized and are oriented with a large angle relative to the axis of the cell. Thick layers are lightly lignified although thin layers show a higher content of lignin, close to that of opposite wood secondary wall. The more the wood was under tensile stress, the less the secondary wall was lignified, and lower the syringyl on guaiacyl lignin units' ratio was. The innermost layer of the secondary wall looks like a typical S3 layer with large microfibril angle and lignin occurrence. The interest of this kind of structure for the understanding of stress generation is discussed.  
  Address UMR EcoFoG, Kourou 97387, French Guiana, Email: ruelle_j@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000246206200009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 163  
Permanent link to this record
 

 
Author Bandou, E.; Lebailly, F.; Muller, F.; Dulormne, M.; Toribio, A.; Chabrol, J.; Courtecuisse, R.; Plenchette, C.; Prin, Y.; Duponnois, R.; Thiao, M.; Sylla, S.; Dreyfus, B.; Ba, A.M. openurl 
  Title The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings Type Journal Article
  Year 2006 Publication Mycorrhiza Abbreviated Journal Mycorrhiza  
  Volume 16 Issue 8 Pages 559-565  
  Keywords Coccoloba uvifera; ectomycorrhizal dependency; mineral uptake; salt stress; water status  
  Abstract The purpose of this study was to test the capacity of the ectomycorrhizal (ECM) fungus, Scleroderma bermudense, to alleviate saline stress in seagrape (Coccoloba uvifera L.) seedlings. Plants were grown over a range (0, 200, 350 and 500 mM) of NaCl levels for 12 weeks, after 4 weeks of non-saline pre-treatment under greenhouse conditions. Growth and mineral nutrition of the seagrape seedlings were stimulated by S. bermudense regardless of salt stress. Although ECM colonization was reduced with increasing NaCl levels, ECM dependency of seagrape seedlings increased. Tissues of ECM plants had significantly increased concentrations of P and K but lower Na and Cl concentrations than those of non-ECM plants. Higher K concentrations in the leaves of ECM plants suggested a higher osmoregulating capacity of these plants. Moreover, the water status of ECM plants was improved despite their higher evaporative leaf surface. The results suggest that the reduction in Na and Cl uptake together with a concomitant increase in P and K absorption and a higher water status in ECM plants may be important salt-alleviating mechanisms for seagrape seedlings growing in saline soils.  
  Address Univ Antilles Guyane, Fac Sci Exactes & Nat, Lab Biol & Physiol Vegetales, F-97159 Guadeloupe, France, Email: amadou.ba@univ-ag.fr  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0940-6360 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000241687200006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 221  
Permanent link to this record
 

 
Author Cohen, M.C.L.; Behling, H.; Lara, R.J.; Smith, C.B.; Matos, H.R.S.; Vedel, V. openurl 
  Title Impact of sea-level and climatic changes on the Amazon coastal wetlands during the late Holocene Type Journal Article
  Year 2009 Publication Vegetation History and Archaeobotany Abbreviated Journal Veg. Hist. Archaeobot.  
  Volume 18 Issue 6 Pages 425-439  
  Keywords Mangrove; Marajo Island; Pollen analysis; Sea-level  
  Abstract Wetland dynamics in northern Brazil during the Holocene were studied by pollen analysis and AMS radiocarbon dating of three cores. Near the Amazon mouth region, covered mainly by primary Amazon coastal forest and herbaceous vegetation, the pollen record indicates the dominance of mangroves between 4800 and 1100 cal yr B.P. A contraction of the mangrove area and an expansion of herbaceous and fern vegetation occurred between 1100 and 750 cal yr B.P. The period between 750 and 200 cal yr B.P. is characterized by an expansion of mangrove and a decrease in herbaceous and fern vegetation. This trend continued until the present. On Atalaia Island, the sediment core indicates a period with poor pollen preservation between 830 and 630 cal yr B.P. Between 630 and 330 cal yr B.P., mangroves expanded. Later, up to 45 cal yr B.P., the mangrove area decreased and the herbaceous vegetation expanded. During the last hundred years, the relative sea-level rise most probably favored the mangrove expansion as far as the topographically highest sector on this island, while the herbaceous vegetation decreased. The pollen data from Agua Preta Lake indicate dry conditions, as reflected by the poor pollen preservation between 390 and 240 cal yr B.P. Between 240 and 60 cal yr B.P., restinga and Amazon coastal forest with palms dominated this region. For the last 120 years, the record indicates an expansion of the mangrove area. However, recent confinement of mangrove development to the topographically highest area, and the loss of mangrove areas on the lowest surfaces have led to a net loss of mangrove coverage during the last decades.  
  Address [Lisboa Cohen, Marcelo Cancela; Smith, Clarisse Beltrao; Soares Matos, Hellen Rosy] Fed Univ Para, Postgrad Program Geol & Geochem, Lab Coastal Dynam, BR-66077530 Belem, PA, Brazil, Email: mcohen@ufpa.br  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0939-6314 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000271191800001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 193  
Permanent link to this record
 

 
Author Leroy, C.; Sabatier, S.; Wahyuni, N.S.; Barczi, J.F.; Dauzat, J.; Laurans, M.; Auclair, D. openurl 
  Title Virtual trees and light capture: a method for optimizing agroforestry stand design Type Journal Article
  Year 2009 Publication Agroforestry Systems Abbreviated Journal Agrofor. Syst.  
  Volume 77 Issue 1 Pages 37-47  
  Keywords Acacia mangium; Tectona grandis; Agroforestry; Light interception; Plant architecture; Simulation; 3D virtual plant  
  Abstract In agroforestry systems, the distribution of light transmitted under tree canopies can be a limiting factor for the development of intercrops. The light available for intercrops depends on the quantity of light intercepted by tree canopies and, consequently, on the architecture of the tree species present. The influence of tree architecture on light transmission was analysed using dynamic 3D architectural models. The architectural analysis of Acacia mangium and Tectona grandis was performed in Indonesian agroforestry systems with trees aged from 1 to 3 years. 3D virtual trees were then generated with the AmapSim simulation software and 3D virtual experiments in which tree age, planting density, planting pattern and pruning intensity varied were reconstructed in order to simulate light available for the crop. Canopy closure of trees was more rapid in A. mangium than in T. grandis agroforestry systems; after 3 years the quantity of light available for A. mangium intercrops was three times lower than under T. grandis. Simulations with A. mangium showed that practices such as pruning and widening tree spacing enable to increase the total transmitted light within the stand. On T. grandis, modification of the tree row azimuth resulted in changes in the spatial and seasonal distribution of light available for the intercrops. These results are discussed in terms of agroforestry system management.  
  Address [Sabatier, Sylvie; Barczi, Jean-Francois; Dauzat, Jean; Laurans, Marilyne] CIRAD, UMR AMAP Botan & Bioinformat Architecture Plantes, F-34398 Montpellier 5, France, Email: sylvie-annabel.sabatier@cirad.fr  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-4366 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000268865600004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 199  
Permanent link to this record
 

 
Author Prevost-Boure, N.C.; Ngao, J.; Berveiller, D.; Bonal, D.; Damesin, C.; Dufrene, E.; Lata, J.C.; Le Dantec, V.; Longdoz, B.; Ponton, S.; Soudani, K.; Epron, D. openurl 
  Title Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux Type Journal Article
  Year 2009 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume 319 Issue 1-2 Pages 1-13  
  Keywords Stable carbon isotopes; Natural abundance; Soil respiration; Trenched plot; Rainforest; Temperate forest  
  Abstract Disentangling the autotrophic and heterotrophic components of soil CO2 efflux is critical to understanding the role of soil system in terrestrial carbon (C) cycling. In this study, we combined a stable C-isotope natural abundance approach with the trenched plot method to determine if root exclusion significantly affected the isotopic composition (delta C-13) of soil CO2 efflux (R-S). This study was performed in different forest ecosystems: a tropical rainforest and two temperate broadleaved forests, where trenched plots had previously been installed. At each site, R-S and its delta C-13 (delta C-13(Rs)) tended to be lower in trenched plots than in control plots. Contrary to R-S, delta C-13(Rs) differences were not significant. This observation is consistent with the small differences in delta C-13 measured on organic matter from root, litter and soil. The lack of an effect on delta C-13(Rs) by root exclusion could be from the small difference in delta C-13 between autotrophic and heterotrophic soil respirations, but further investigations are needed because of potential artefacts associated with the root exclusion technique.  
  Address [Prevost-Boure, Nicolas Chemidlin; Berveiller, Daniel; Damesin, Claire; Dufrene, Eric; Lata, Jean-Christophe; Soudani, Kamel] Univ Paris Sud, Lab Ecol Systemat & Evolut, AgroParisTech, CNRS,UMR 8079, F-75231 Paris, France, Email: nicolas.chemidlin-prevost-boure@u-psud.fr  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-079X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000266143400001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 203  
Permanent link to this record
 

 
Author Kiaer, L.P.; Felber, F.; Flavell, A.; Guadagnuolo, R.; Guiatti, D.; Hauser, T.P.; Olivieri, A.M.; Scotti, I.; Syed, N.; Vischi, M.; van de Wiel, C.; Jorgensen, R.B. openurl 
  Title Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L Type Journal Article
  Year 2009 Publication Genetic Resources and Crop Evolution Abbreviated Journal Genet. Resour. Crop Evol.  
  Volume 56 Issue 3 Pages 405-419  
  Keywords AFLP; GM co-existence; Gene dispersal; Introgression; Risk assessment; SSAP  
  Abstract Spontaneous gene flow between wild and cultivated chicory, Cichorium intybus L., may have implications for the genetic structure and evolution of populations and varieties. One aspect of this crop-wild gene flow is the dispersal of transgenes from genetically modified varieties, e.g. gene flow from GM chicory to natural chicory could have unwanted consequences. With the purpose to identify and quantify crop-wild gene flow in chicory, we analysed introgression in 19 wild chicory populations and 16 accessions of chicory varieties and landraces distributed across Northern, Central and Mediterranean Europe. The analysis used 281 AFLP markers and 75 SSAP markers giving a total of 356 polymorphic markers. Results from model based assignments with the program STRUCTURE indicated many incidents of recent gene flow. Gene flow was observed both between cultivars and wild populations, between landraces and wild populations, between different wild populations as well as between cultivars. Population structure visualized by distance-based clustering showed a North-South geographical structuring of the wild populations, and a general grouping of the cultivars corresponding to known origin. The results indicated, however, that the structuring between the two groups of wild and cultivated types was weak. As crop and wild recipients are genetically close and genes are transferred between the two types rather frequently, focus on mitigating crop-wild gene flow should be increased, before transgenic varieties are cultivated openly.  
  Address [Kiaer, L. P.; Jorgensen, R. B.] DTU, Riso Natl Lab, Biosyst Dept, DK-4000 Roskilde, Denmark, Email: rikke.bagger.jorgensen@risoe.dk  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9864 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000264835300011 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 204  
Permanent link to this record
 

 
Author Leroy, C.; Gueroult, M.; Wahyuni, N.S.; Escoute, J.; Cereghino, R.; Sabatier, S.; Auclair, D. openurl 
  Title Morphogenetic trends in the morphological, optical and biochemical features of phyllodes in Acacia mangium Willd (Mimosaceae) Type Journal Article
  Year 2009 Publication Trees-Structure and Function Abbreviated Journal Trees-Struct. Funct.  
  Volume 23 Issue 1 Pages 37-49  
  Keywords Chlorophyll; Phyllode morphology; Phyllode anatomy; Nitrogen; Optical properties; Plant architecture  
  Abstract Endogenous variations in the annual growth of trees suggest that similar trends would occur in phyllodes. In comparison to leaves, the characteristics of phyllodes are less well known, hence this study examines the effects of architectural position and age of tree on the phyllodes of Acacia mangium. Phyllodes were investigated on 1-, 2-, and 3-year-old trees from three axis positions within the crown. We focused on the morphological, optical and biochemical traits of the phyllodes. The increase in phyllode area and lamina thickness is more pronounced in the older trees. Leaf mass area (LMA), stomatal density, nitrogen and chlorophyll content increase with tree age. The values of these characteristics decrease from the main stem to the lower branches for the older trees. Phyllode light absorptance increased with tree age whereas reflectance was higher for the upper position compared to the lower position within the crown. Carotenoid content and chlorophyll a/b ratio were higher for the younger phyllodes of younger trees. Increasing tree size induced modifications in the phyllode characteristics which are influenced by both morphogenetic and light gradients within the crown. This study demonstrated pronounced changes in terms of morphological and functional indicators of photosynthetic capacity in relation to phyllode position within the crown and to tree age. These morphogenetic effects on the phyllode characteristics should be taken into account in studies on phenotypic plasticity.  
  Address [Sabatier, Sylvie] CIRAD, UMR AMAP BotAnique & BioinforMat Architecture, F-34398 Montpellier 5, France, Email: sylvie-annabel.sabatier@cirad.fr  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000262538700005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 206  
Permanent link to this record
 

 
Author Dejean, A.; Grangier, J.; Leroy, C.; Orivel, J.; Gilbernau, M. openurl 
  Title Nest site selection and induced response in a dominant arboreal ant species Type Journal Article
  Year 2008 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 95 Issue 9 Pages 885-889  
  Keywords ant-plant relationships; biotic defense; induced responses; predation  
  Abstract It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.  
  Address [Dejean, Alain] CNRS Guyane, UPS 5621, F-97300 Cayenne, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000258675700013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 209  
Permanent link to this record
 

 
Author Almeras, T.; Yoshida, M.; Okuyama, T. openurl 
  Title Strains inside xylem and inner bark of a stem submitted to a change in hydrostatic pressure Type Journal Article
  Year 2006 Publication Trees-Structure and Function Abbreviated Journal Trees-Struct. Funct.  
  Volume 20 Issue 4 Pages 460-467  
  Keywords diurnal strains; hydrostatic pressure; xylem; inner bark; mechanical properties  
  Abstract Tangential strains were measured with strain gauges at the surface of xylem and inner bark of saplings of Cryptomeria japonica D. Don. and Fagus silvatica L. during a pressurization test. The test consists in submitting the whole sapling to an artificially imposed hydrostatic pressure of increasing magnitude. The elastic response of the stems was found linear both at the surface of xylem and inner bark. A simple geometric model allows to compute radial strains in each tissue from tangential strain data. Inside inner bark, radial strains are much larger than tangential strains, because tangential strains are restrained by the core of wood. The material compliance of each tissue was computed as the ratio between the radial strain and the pressure that caused it. The material compliance of xylem is much lower than that of inner bark, but, as its thickness is much larger, its contribution to the apparent behavior of the stem is not negligible. Computation of material compliances by this pressurization test provides information about the specific behavior of each tissue in response to hydrostatic pressure. This can be used to estimate and interpret the calibration factor linking the water status of the plant to the apparent strain measured at its surface.  
  Address Nagoya Univ, Grad Sch Bioagr Sci, Lab Biomat Phys, Chikusa Ku, Nagoya, Aichi 4648601, Japan, Email: t_almeras@hotmail.com  
  Corporate Author Thesis  
  Publisher (down) SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000237858100007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: