|   | 
Details
   web
Records
Author Djenontin Tindo, S.; Amusant, N.; Dangou, J.; Wotto, D.V.; Avlessi, F.; Dahouénon-Ahoussi, E.; Lozano, P.; Pioch, D.; Sohounhloué, K.C.D.
Title Screening of Repellent, Termiticidal and Preventive activities on Wood, of Azadirachta indica and Carapa procera (Meliaceae) seeds oils Type Journal Article
Year 2012 Publication International Research Journal of Biological Sciences Abbreviated Journal ISCA J. Biological Sci.
Volume 1 Issue 3 Pages 25-29
Keywords
Abstract
Address
Corporate Author Thesis
Publisher (up) International Science Congress Association Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 462
Permanent link to this record
 

 
Author Piponiot, C.; Rödig, E.; Putz, F.E.; Rutishauser, E.; Sist, P.; Ascarrunz, N.; Blanc, L.; Derroire, G.; Descroix, L.; Guedes, M.C.; Coronado, E.H.; Huth, A.; Kanashiro, M.; Licona, J.C.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Shenkin, A.; de Souza, C.R.; Vidal, E.; West, T.A.P.; Wortel, V.; Herault, B.
Title Can timber provision from Amazonian production forests be sustainable? Type Journal Article
Year 2019 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters
Volume 14 Issue 6 Pages 064014
Keywords
Abstract Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth’s most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests’ fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable.
Address
Corporate Author Thesis
Publisher (up) IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 875
Permanent link to this record
 

 
Author Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Ruschel, A.R.; Souza, C.R. de; Vidal, E.; Wortel, V.; Hérault, B.
Title Optimal strategies for ecosystem services provision in Amazonian production forests Type Journal Article
Year 2019 Publication Environmental Research Letters Abbreviated Journal
Volume 14 Issue 12 Pages 124090
Keywords
Abstract Although tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting high-intensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and trans-boundary forest management.
Address
Corporate Author Thesis
Publisher (up) IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 910
Permanent link to this record
 

 
Author Veron, V.; Caron, H.; Degen, B.
Title Gene flow and mating system of the tropical tree Sextonia rubra Type Journal Article
Year 2005 Publication Silvae Genetica Abbreviated Journal Silvae Genet.
Volume 54 Issue 6 Pages 275-280
Keywords genetic diversity; gene flow; heterozygosity; microsatellites; mixed mating; tropical tree; twogener
Abstract In this paper we report a study of the mating system and gene flow of Sextonia rubra, a hermaphroditic, insect pollinated tropical tree species with a geographic distribution in the Guyana Plateau and the Amazon. Using five microsatellites we analysed 428 seeds of 27 open pollinated families at the experimental site “Paracou” in French Guiana. We observed, compared to other tropical tree species, a high level of genetic diversity. We estimated parameters of the mating system and gene flow by using the mixed mating model and the TwoGener approach. The estimated multilocus outcrossing rate, t(m), was 0.992 indicating nearly complete outcrossing. A significant level of biparental inbreeding and a:small proportion. of full-sibs were estimated for the 27 seed arrays. The differentiation of allelic frequencies among the pollen pools was (Phi(FT) = 0.061. We estimated mean pollen dispersal distances between 65 m and 89 m according to the dispersal models used. The joint estimation of pollen dispersal and density of reproductive trees gave an effective density estimate of 2.1-2.2 trees/ha.
Address INRA, UMR, ECOFOG, Kourou 9738, French Guiana, Email: b.degen@holz.uni-hamburg.de
Corporate Author Thesis
Publisher (up) J D SAUERLANDERS VERLAG Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0037-5349 ISBN Medium
Area Expedition Conference
Notes ISI:000235239400005 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 182
Permanent link to this record
 

 
Author Salas-Lopez, A.; Violle, C.; Mallia, L.; Orivel, J.
Title Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana Type Journal Article
Year 2018 Publication Insect Conservation and Diversity Abbreviated Journal Insect Conserv Divers
Volume 11 Issue 2 Pages 162-173
Keywords Community assembly; Formicidae; functional diversity; gradient analysis; habitat filtering; land-use intensification; n-dimensional hypervolume approach
Abstract Abstract Land-use changes frequently lead to major changes in the composition and diversity of organisms. A reduction in the range of strategies enabling organisms to survive in a given environment and changes in the average trait values of species may potentially be associated with variations in species? number and identity. We investigated the variation in ant taxonomic composition and morphological trait diversity along a land-use gradient in French Guiana. We measured 13 core ant morphological traits on all species sampled. We then selected the set of five traits that best captured changes along the land-use gradient. Potential effects of the variation in morphological trait diversity and average values were evaluated by examining morphological traits individually as well as in combination. We found that variation in taxonomic diversity was unrelated to the plot-level morphospace. Conversely, a significant shift in taxonomic composition was accompanied by changes in the average values of community traits along the studied gradient, examined both individually and in combination. We argue that morphological trait values may be related to the success of different species in surviving in a given environment and, therefore, are indicative of the taxonomic turnover in ants along the land-use gradient. Nevertheless, in contradiction with theoretical expectations, the morphospace is only slightly affected by habitat filtering and loosely impacted by taxonomic changes. Examining the sensitivity of the morphospace to abiotic and biotic factors and how it reflects varying ecological pressures for species is thus of the utmost importance.
Address
Corporate Author Thesis
Publisher (up) John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1752-458x ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/icad.12248 Approved no
Call Number EcoFoG @ webmaster @ Serial 892
Permanent link to this record
 

 
Author Orivel, J.; Klimes, P.; Novotny, V.; Leponce, M.
Title Resource use and food preferences in understory ant communities along a complete elevational gradient in Papua New Guinea Type Journal Article
Year 2018 Publication Biotropica Abbreviated Journal Biotropica
Volume 50 Issue 4 Pages 641-648
Keywords altitudinal gradient; food resources; Formicidae; Mt Wilhelm; nutritional ecology
Abstract Elevational gradients provide an interesting opportunity for studying the effect of climatic drivers over short distances on the various facets of biodiversity. It is globally assumed that the decrease in species richness with increasing elevation follows mainly the decrease in ecosystem productivity, but studies on functional diversity still remain limited. Here, we investigated how resource use and food preferences by both individual ant species and communities foraging in the understory vary with elevation along a complete elevational gradient (200 to 3200 m asl). Five bait types reflecting some of the main ecosystem processes in which ants are involved were tested: mutualism (sucrose and melezitose), predation (live termites), and detritivory (crushed insects and chicken feces). The observed monotonic decrease in both species richness and occurrences with elevation increase was accompanied by changes in some of the tested ecosystem processes. Such variations can be explained by resource availability and/or resource limitation: Predation and bird feces removal decreased with increasing elevation possibly reflecting a decline in species able to use these resources, while insect detritivory and nectarivory were most probably driven by resource limitation (or absence of limitation), as their relative use did not change along the gradient. Consequently, resource attractiveness (i.e., food preferences at the species level) appears as an important factor in driving community structuring in ants together with the abiotic environmental conditions.
Address
Corporate Author Thesis
Publisher (up) John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3606 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/btp.12539 Approved no
Call Number EcoFoG @ webmaster @ Serial 893
Permanent link to this record
 

 
Author Dejean, A.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B.; Leponce, M.
Title Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests Type Journal Article
Year 2019 Publication Ecological Entomology Abbreviated Journal Ecol Entomol
Volume 44 Issue 4 Pages 560-570
Keywords Ant mosaics; connections on the ground; host tree attractiveness; indicators of disturbance; primary Neotropical rainforest; territoriality
Abstract 1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass.
2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground.
3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others.
4. Small-scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.
Address
Corporate Author Thesis
Publisher (up) John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0307-6946 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/een.12735 Approved no
Call Number EcoFoG @ webmaster @ Serial 882
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Mouza, C.; Dumont, Y.; Leroy, C.
Title Larval interference competition between the native Neotropical mosquito Limatus durhamii and the invasive Aedes aegypti improves the fitness of both species Type Journal Article
Year 2018 Publication Insect Science Abbreviated Journal Insect Science
Volume 25 Issue Pages 1102-1107
Keywords Aedes aegypti; increased fitness; interference competition; Limatus durhamii; phenotypic plasticity; resistance to invasion
Abstract Abstract Interspecific competition with native species during biological invasions can sometimes limit alien expansion. We aimed to determine the potential ecological effects of Limatus durhamii Theobald 1901, a native Neotropical mosquito (Diptera: Culicidae) species, on the invasive species Aedes (Stegomyia) aegypti (Linnaeus 1762) that breeds in the same artificial water containers. Development time and adult dry mass were measured in 3 rearing conditions: control (a single larva), intraspecific competition (2 conspecific larvae), and interspecific competition (2 heterospecific larvae). Food was provided ad libitum to eliminate exploitative competition. For Ae. aegypti, development time was not affected by interspecific interference competition (nonsignificant differences with the control) and the adult dry mass was significantly higher, meaning that individual fitness likely increased. Yet, because previous studies showed longer development time and lighter adults during competition with other invasive mosquitoes, it is likely that Ae. aegypti can express a different phenotype depending on the competing species. The similar pattern found for Li. durhamii females and the nonsignificant difference with the control for males explain in part why this species can compete with Ae. aegypti.
Address
Corporate Author Thesis
Publisher (up) John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9609 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 836
Permanent link to this record
 

 
Author Bastin, J.-F.; Rutishauser, E.; Kellner, J.R.; Saatchi, S.; Pélissier, R.; Hérault, B.; Slik, F.; Bogaert, J.; De Cannière, C.; Marshall, A.R.; Poulsen, J.; Alvarez-Loyayza, P.; Andrade, A.; Angbonga-Basia, A.; Araujo-Murakami, A.; Arroyo, L.; Ayyappan, N.; de Azevedo, C.P.; Banki, O.; Barbier, N.; Barroso, J.G.; Beeckman, H.; Bitariho, R.; Boeckx, P.; Boehning-Gaese, K.; Brandão, H.; Brearley, F.Q.; Breuer Ndoundou Hockemba, M.; Brienen, R.; Camargo, J.L.C.; Campos-Arceiz, A.; Cassart, B.; Chave, J.; Chazdon, R.; Chuyong, G.; Clark, D.B.; Clark, C.J.; Condit, R.; Honorio Coronado, E.N.; Davidar, P.; de Haulleville, T.; Descroix, L.; Doucet, J.-L.; Dourdain, A.; Droissart, V.; Duncan, T.; Silva Espejo, J.; Espinosa, S.; Farwig, N.; Fayolle, A.; Feldpausch, T.R.; Ferraz, A.; Fletcher, C.; Gajapersad, K.; Gillet, J.-F.; Amaral, I.L. do; Gonmadje, C.; Grogan, J.; Harris, D.; Herzog, S.K.; Homeier, J.; Hubau, W.; Hubbell, S.P.; Hufkens, K.; Hurtado, J.; Kamdem, N.G.; Kearsley, E.; Kenfack, D.; Kessler, M.; Labrière, N.; Laumonier, Y.; Laurance, S.; Laurance, W.F.; Lewis, S.L.; Libalah, M.B.; Ligot, G.; Lloyd, J.; Lovejoy, T.E.; Malhi, Y.; Marimon, B.S.; Marimon Junior, B.H.; Martin, E.H.; Matius, P.; Meyer, V.; Mendoza Bautista, C.; Monteagudo-Mendoza, A.; Mtui, A.; Neill, D.; Parada Gutierrez, G.A.; Pardo, G.; Parren, M.; Parthasarathy, N.; Phillips, O.L.; Pitman, N.C.A.; Ploton, P.; Ponette, Q.; Ramesh, B.R.; Razafimahaimodison, J.-C.; Réjou-Méchain, M.; Rolim, S.G.; Saltos, H.R.; Rossi, L.M.B.; Spironello, W.R.; Rovero, F.; Saner, P.; Sasaki, D.; Schulze, M.; Silveira, M.; Singh, J.; Sist, P.; Sonke, B.; Soto, J.D.; de Souza, C.R.; Stropp, J.; Sullivan, M.J.P.; Swanepoel, B.; Steege, H. ter; Terborgh, J.; Texier, N.; Toma, T.; Valencia, R.; Valenzuela, L.; Ferreira, L.V.; Valverde, F.C.; Van Andel, T.R.; Vasque, R.; Verbeeck, H.; Vivek, P.; Vleminckx, J.; Vos, V.A.; Wagner, F.H.; Warsudi, P.P.; Wortel, V.; Zagt, R.J.; Zebaze, D.
Title Pan-tropical prediction of forest structure from the largest trees Type Journal Article
Year 2018 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr
Volume 27 Issue 11 Pages 1366-1383
Keywords carbon; climate change; forest structure; large trees; pan-tropical; Redd+; tropical forest ecology
Abstract Abstract Aim Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Location Pan-tropical. Time period Early 21st century. Major taxa studied Woody plants. Methods Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50?70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Main conclusions Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
Address
Corporate Author Thesis
Publisher (up) John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822x ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/geb.12803 Approved no
Call Number EcoFoG @ webmaster @ Serial 845
Permanent link to this record
 

 
Author Franklin, J.; Andrade, R.; Daniels, M.L.; Fairbairn, P.; Fandino, M.C.; Gillespie, T.W.; González, G.; Gonzalez, O.; Imbert, D.; Kapos, V.; Kelly, D.L.; Marcano-Vega, H.; Meléndez-Ackerman, E.J.; McLaren, K.P.; McDonald, M.A.; Ripplinger, J.; Rojas-Sandoval, J.; Ross, M.S.; Ruiz, J.; Steadman, D.W.; Tanner, E.V.J.; Terrill, I.; Vennetier, M.
Title Geographical ecology of dry forest tree communities in the West Indies Type Journal Article
Year 2018 Publication Journal of Biogeography Abbreviated Journal J Biogeogr
Volume 45 Issue 5 Pages 1168-1181
Keywords beta diversity; Caribbean; community composition; seasonally dry tropical forest; species turnover; tropical dry forest; West Indies
Abstract Abstract Aim Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant sites would suggest communities structured by speciation and dispersal limitations. A nested pattern would be consistent with a steep resource gradient. Correlation of species composition with climatic variation would suggest communities structured by broad-scale environmental filtering. Location The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico, US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south Florida (USA) and Florida Keys (USA). Taxon Seed plants?woody taxa (primarily trees). Methods We compiled 572 plots from 23 surveys conducted between 1969 and 2016. Hierarchical clustering of species in plots, and indicator species analysis for the resulting groups of sites, identified geographical patterns of turnover in species composition. Nonparametric analysis of variance, applied to principal components of bioclimatic variables, determined the degree of covariation in climate with location. Nestedness versus turnover in species composition was evaluated using beta diversity partitioning. Generalized dissimilarity modelling partitioned the effect of climate versus geographical distance on species composition. Results Despite a set of commonly occurring species, SDTF tree community composition was distinct among islands and was characterized by spatial turnover on climatic gradients that covaried with geographical gradients. Greater Antillean islands were characterized by endemic indicator species. Northern subtropical areas supported distinct, rather than nested, SDTF communities in spite of low levels of endemism. Main conclusions The SDTF species composition was correlated with climatic variation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was characterized by endemic species, consistent with their geological history and the biogeography of plant lineages. These results suggest that both environmental filtering and speciation shape Caribbean SDTF tree communities.
Address
Corporate Author Thesis
Publisher (up) John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-0270 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/jbi.13198 Approved no
Call Number EcoFoG @ webmaster @ Serial 846
Permanent link to this record