toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marino, N.A.C.; Céréghino, R.; Gilbert, B.; Petermann, J.S.; Srivastava, D.S.; de Omena, P.M.; Bautista, F.O.; Guzman, L.M.; Romero, G.Q.; Trzcinski, M.K.; Barberis, I.M.; Corbara, B.; Debastiani, V.J.; Dézerald, O.; Kratina, P.; Leroy, C.; MacDonald, A.A.M.; Montero, G.; Pillar, V.D.; Richardson, B.A.; Richardson, M.J.; Talaga, S.; Gonçalves, A.Z.; Piccoli, G.C.O.; Jocqué, M.; Farjalla, V.F. doi  openurl
  Title Species niches, not traits, determine abundance and occupancy patterns: A multi-site synthesis Type Journal Article
  Year 2020 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol. Biogeogr.  
  Volume 29 Issue 2 Pages 295-308  
  Keywords abundance; environmental niche; functional distinctiveness; functional traits; metacommunity; niche breadth; niche position; occupancy; abundance; biodiversity; functional group; geographical distribution; invertebrate; Neotropical Region; niche breadth; Invertebrata  
  Abstract Aim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period: 1993–2014. Major taxa studied: Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life. © 2019 John Wiley & Sons Ltd  
  Address Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium  
  Corporate Author Thesis  
  Publisher (down) Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466822x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 991  
Permanent link to this record
 

 
Author Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P. doi  openurl
  Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 229 Issue 3 Pages 1453-1466  
  Keywords bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy  
  Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation  
  Address UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France  
  Corporate Author Thesis  
  Publisher (down) Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 997  
Permanent link to this record
 

 
Author Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guehl, J.M.; Granier, A. openurl 
  Title Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2008 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 14 Issue 8 Pages 1917-1933  
  Keywords dry season; ecosystem respiration; eddy covariance; gross ecosystem productivity; Neotropical rainforest; net ecosystem productivity; soil drought; solar radiation  
  Abstract The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (R-Ed) and daily gross ecosystem productivity (GEP(d)), were estimated over 2 years at a flux tower site in French Guiana, South America (5 degrees 16'54'N, 52 degrees 54'44'W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93-day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m(-2)). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower R-Ed combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m(-2). Severe drought conditions resulted in even lower R-Ed, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m(-2)), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  
  Address [Bonal, Damien; Goret, Jean-Yves; Burban, Benoit] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: damien.bonal@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257712400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 133  
Permanent link to this record
 

 
Author Paine, C.E.T.; Harms, K.E.; Schnitzer, S.A.; Carson, W.P. openurl 
  Title Weak competition among tropical tree seedlings: Implications for species coexistence Type Journal Article
  Year 2008 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 40 Issue 4 Pages 432-440  
  Keywords Brosimum alicastrum; competitive irrelevance; maintenance of biodiversity; Matisia cordata; resource competition; Panama; Peru; Pouteria reticulata; zone of influence  
  Abstract The intensity of competition among forest tree seedlings is poorly understood, but has important ramifications for their recruitment and for the maintenance of species diversity. Intense competition among seedlings could allow competitively dominant species to exclude subordinate species. Alternatively, the low density and small stature of forest tree seedlings could preclude intense interseedling competition. In this case, other processes, such as size-asymmetric competition with adults, interactions with consumers, or neutral dynamics would prevail as those structuring the forest understory. We tested the intensity of, and potential for, intraspecific competition among tree seedlings of three species (Brosimum alicastrum, Matisia cordata, and Pouteria reticulata) in two Neotropical rain forests. We reduced stem densities by up to 90 percent and monitored individual growth and survival rates for up to 24 mo. Individual growth and survival rates were generally unrelated to stem density. Contrary to the predicted behavior of intensely competing plant populations, the distribution of individual heights did not become more left-skewed with time for any species, regardless of plot density; i.e., excesses of short, suppressed individuals did not accumulate in high-density plots. We further measured the overlap of zones of influence (ZOIs) to assess the potential for resource competition. Seedling ZOIs overlapped only slightly in extremely dense monodominant plots, and even less in ambient-density plots of mixed composition. Our results thus suggest that interseedling competition was weak. Given the low density of tree seedlings in Neotropical forests, we infer that resource competition among seedlings may be irrelevant to their recruitment.  
  Address [Paine, C. E. Timothy; Harms, Kyle E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA, Email: cetpaine@gmail.com  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257717500006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 134  
Permanent link to this record
 

 
Author Hattenschwiler, S.; Aeschlimann, B.; Couteaux, M.M.; Roy, J.; Bonal, D. openurl 
  Title High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community Type Journal Article
  Year 2008 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 179 Issue 1 Pages 165-175  
  Keywords French Guiana; interspecific and intraspecific variation; leaf litter traits; neotropical rainforest; nitrogen; nutrient resorption; phosphorus; stoichiometry  
  Abstract Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.  
  Address [Haettenschwiler, Stephan; Aeschlimann, Beat; Couteaux, Marie-Madeleine; Roy, Jacques] CEFE, CNRS, F-34293 Montpellier 5, France, Email: stephan.hattenschwiler@cefe.cnrs.fr  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000256412500017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 139  
Permanent link to this record
 

 
Author Vendramin, G.G.; Fady, B.; Gonzalez-Martinez, S.C.; Hu, F.S.; Scotti, I.; Sebastiani, F.; Soto, A.; Petit, R.J. openurl 
  Title Genetically depauperate but widespread: The case of an emblematic mediterranean pine Type Journal Article
  Year 2008 Publication Evolution Abbreviated Journal Evolution  
  Volume 62 Issue 3 Pages 680-688  
  Keywords chloroplast microsatellites; conservation genetics; diversity depletion; human impact; Pinus pinea  
  Abstract Genetic variation is generally considered a prerequisite for adaptation to new environmental conditions. Thus the discovery of genetically depauperate but geographically widespread species is unexpected. We used 12 paternally inherited chloroplast microsatellites to estimate population genetic variation across the full range of an emblematic circum-Mediterranean conifer, stone pine (Pinus pinea L.). The same chloroplast DNA haplotype is fixed in nearly all of the 34 investigated populations. Such a low level of variation is consistent with a previous report of very low levels of diversity at nuclear loci in this species. Stone pine appears to have passed through a severe and prolonged demographic bottleneck, followed by subsequent natural- and human-mediated dispersal across the Mediterranean Basin. No other abundant and widespread plant species has as little genetic diversity as P. pinea at both chloroplast and nuclear markers. However, the species harbors a nonnegligible amount of variation at adaptive traits. Thus a causal relationship between genetic diversity, as measured by marker loci, and the evolutionary precariousness of a species, cannot be taken for granted.  
  Address [Vendramin, Giovanni G.] Ist Genet Vegetale, Sez Firenze, Florence, Italy, Email: petit@pierroton.inra.fr  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-3820 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000253758600016 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 141  
Permanent link to this record
 

 
Author Tindo, M.; Kenne, M.; Dejean, A. openurl 
  Title Advantages of multiple foundress colonies in Belonogaster juncea juncea L.: greater survival and increased productivity Type Journal Article
  Year 2008 Publication Ecological Entomology Abbreviated Journal Ecol. Entomol.  
  Volume 33 Issue 2 Pages 293-297  
  Keywords colony development; evolution of eusociality; fitness; Polistinae; productivity  
  Abstract 1. The ecological hypothesis predicts that multiple foundress colonies of social wasps may have a better survival rate and produce more brood per capita than single foundress colonies. With the aim of verifying if these characteristics exist in the primitively eusocial wasp species Belonogaster juncea juncea (L.), we monitored 49 foundations, including 13 single and 36 multiple foundress colonies, in Cameroon. 2. Multiple foundress colonies were significantly more successful than single foundress colonies in producing at least one adult. 3. The total productivity of the colonies increased significantly with the number of associated foundresses, but the productivity per capita did not. No single foundress colony reached the sexual phase, while eight (21.6%) multiple foundress colonies did. Males were produced in only five colonies, so that the sex ratio was biased in favour of females. 4. These results suggest that because of the strong ecological constraints on solitary nesting, survival and high colony productivity are two advantages of multiple foundress colonies in B. j. juncea. 5. The decreasing per capita productivity concomitant with an increasing number of females noted in this study illustrates once again Michener's paradox. The coefficient of variance of the per capita productivity significantly decreased with group size, as Wenzel and Pickering suggested in the model they created to explain the paradox. 6. Ecological factors may act in conjunction with other factors, such as genetic relatedness between associated foundresses, to promote joining behaviour in B. j. juncea.  
  Address [Tindo, Maurice; Kenne, Martin] Univ Douala, Fac Sci, BP Douala, Cameroon, Email: jtindo2000@yahoo.fr  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000253710000017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 142  
Permanent link to this record
 

 
Author Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichsteins, M.; Papale, D.; Piao, S.L.; Schulzes, E.D.; Wingate, L.; Matteucci, G.; Aragao, L.; Aubinet, M.; Beers, C.; Bernhoffer, C.; Black, K.G.; Bonal, D.; Bonnefond, J.M.; Chambers, J.; Ciais, P.; Cook, B.; Davis, K.J.; Dolman, A.J.; Gielen, B.; Goulden, M.; Grace, J.; Granier, A.; Grelle, A.; Griffis, T.; Grunwald, T.; Guidolotti, G.; Hanson, P.J.; Harding, R.; Hollinger, D.Y.; Hutyra, L.R.; Kolar, P.; Kruijt, B.; Kutsch, W.; Lagergren, F.; Laurila, T.; Law, B.E.; Le Maire, G.; Lindroth, A.; Loustau, D.; Malhi, Y.; Mateus, J.; Migliavacca, M.; Misson, L.; Montagnani, L.; Moncrieff, J.; Moors, E.; Munger, J.W.; Nikinmaa, E.; Ollinger, S.V.; Pita, G.; Rebmann, C.; Roupsard, O.; Saigusa, N.; Sanz, M.J.; Seufert, G.; Sierra, C.; Smith, M.L.; Tang, J.; Valentini, R.; Vesala, T.; Janssens, I.A. openurl 
  Title CO2 balance of boreal, temperate, and tropical forests derived from a global database Type Journal Article
  Year 2007 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 13 Issue 12 Pages 2509-2537  
  Keywords carbon cycle; CO2; forest ecosystems; global database; gross primary productivity; net ecosystem productivity; net primary productivity  
  Abstract Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.  
  Address Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium, Email: Sebastiaan.Luyssaert@ua.ac.be  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000251049000004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 151  
Permanent link to this record
 

 
Author Christensen-Dalsgaard, K.K.; Fournier, M.; Ennos, A.R.; Barfod, A.S. openurl 
  Title Changes in vessel anatomy in response to mechanical loading in six species of tropical trees Type Journal Article
  Year 2007 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 176 Issue 3 Pages 610-622  
  Keywords hydraulic architecture; hydraulic-mechanical trade-off; mechanical adaptation; rooting morphology; tropical trees; vascular anatomy  
  Abstract It is well known that trees adapt their supportive tissues to changes in loading conditions, yet little is known about how the vascular anatomy is modified in this process. We investigated this by comparing more and less mechanically loaded sections in six species of tropical trees with two different rooting morphologies. We measured the strain, vessel size, frequency and area fraction and from this calculated the specific conductivity, then measured the conductivity, modulus of elasticity and yield stress. The smallest vessels and the lowest vessel frequency were found in the parts of the trees subjected to the greatest stresses or strains. The specific conductivity varied up to two orders of magnitude between mechanically loaded and mechanically unimportant parts of the root system. A trade-off between conductivity and stiffness or strength was revealed, which suggests that anatomical alterations occur in response to mechanical strain. By contrast, between-tree comparisons showed that average anatomical features for the whole tree seemed more closely related to their ecological strategy.  
  Address Univ Manchester, Fac Life Sci, Manchester M60 1QD, Lancs, England, Email: karen@cd-mail.dk  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000250275000013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 156  
Permanent link to this record
 

 
Author Nasr, H.; Domenach, A.M.; Ghorbel, M.H.; Benson, D.R. openurl 
  Title Divergence in symbiotic interactions between same genotypic PCR-RFLP Frankia strains and different Casuarinaceae species under natural conditions Type Journal Article
  Year 2007 Publication Physiologia Plantarum Abbreviated Journal Physiol. Plant.  
  Volume 130 Issue 3 Pages 400-408  
  Keywords  
  Abstract The symbiotic interactions between Frankia strains and their associated plants from the Casuarinaceae under controlled conditions are well documented but little is known about these interactions under natural conditions. We explored the symbiotic interactions between eight genotypically characterized Frankia strains and five Casuarinaceae species in long-term field trials. Characterization of strains was performed using the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) for the nifD-nifK intergenic transcribed spacer (ITS) and 16S-23S ITS. Assessments of the symbiotic interactions were based on nodulation patterns using nodule dry weight and viability, and on actual N-2 fixation using the delta N-15 method. The PCR-RFLP patterns showed that the analyzed strains belonged to the same genotypic group (CeD group), regardless of the host species and environment of origin. The nodule viability index is introduced as a new tool to measure the viability of perennial nodules and to predict their effectiveness. The host Casuarinaceae species was a key factor influencing both the actual N-2-fixing activity of the associated Frankia strain and the viability of nodules within a location. This is the first study providing information on the symbiotic interactions between genotypically characterized Frankia strains and actinorhizal plants under natural conditions. The results revealed a way to improve a long-term management of the Casuarinaceae symbiosis.  
  Address Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06279 USA, Email: david.benson@uconn.edu  
  Corporate Author Thesis  
  Publisher (down) BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9317 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000247206100010 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: