toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zinger, L.; Taberlet, P.; Schimann, H.; Bonin, A.; Boyer, F.; De Barba, M.; Gaucher, P.; Gielly, L.; Giguet-Covex, C.; Iribar, A.; Réjou-Méchain, M.; Rayé, G.; Rioux, D.; Schilling, V.; Tymen, B.; Viers, J.; Zouiten, C.; Thuiller, W.; Coissac, E.; Chave, J. url  doi
openurl 
  Title Body size determines soil community assembly in a tropical forest Type Journal Article
  Year 2019 Publication (down) Molecular Ecology Abbreviated Journal Mol Ecol  
  Volume 28 Issue 3 Pages 528-543  
  Keywords DNA metabarcoding; eDNA; French Guiana; multitaxa; neutral assembly; niche determinism; propagule size; soil diversity  
  Abstract Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic?distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 873  
Permanent link to this record
 

 
Author Schmitt, Sylvain ; Tysklind, Niklas ; Hérault, Bruno ; Heuertz, Myriam doi  openurl
  Title Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes Type Journal Article
  Year 2021 Publication (down) Molecular Ecology Abbreviated Journal  
  Volume 30 Issue 20 Pages 5080-5093  
  Keywords  
  Abstract Closely related tree species that grow in sympatry are abundant in rainforests. However, little is known of the ecoevolutionary processes that govern their niches and local coexistence. We assessed genetic species delimitation in closely related sympatric species belonging to two Neotropical tree species complexes and investigated their genomic adaptation to a fine-scale topographic gradient with associated edaphic and hydrologic features. Combining LiDAR-derived topography, tree inventories, and single nucleotide polymorphisms (SNPs) from gene capture experiments, we explored genome-wide population genetic structure, covariation of environmental variables, and genotype-environment association to assess microgeographic adaptations to topography within the species complexes Symphonia (Clusiaceae), and Eschweilera (Lecythidaceae) with three species per complex and 385 and 257 individuals genotyped, respectively. Within species complexes, closely related tree species had different realized optima for topographic niches defined through the topographic wetness index or the relative elevation, and species displayed genetic signatures of adaptations to these niches. Symphonia species were genetically differentiated along water and nutrient distribution particularly in genes responding to water deprivation, whereas Eschweilera species were genetically differentiated according to soil chemistry. Our results suggest that varied topography represents a powerful driver of processes modulating tropical forest biodiversity with differential adaptations that stabilize local coexistence of closely related tree species.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1045  
Permanent link to this record
 

 
Author Birer, C.; Moreau, C.S.; Tysklind, N.; Zinger, L.; Duplais, C. doi  openurl
  Title Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest Type Journal Article
  Year 2020 Publication (down) Molecular Ecology Abbreviated Journal Mol. Ecol.  
  Volume 29 Issue 7 Pages 1372-1385  
  Keywords ant gardens; bacterial communities; cuticular microbiome; insect cuticle; metabarcoding  
  Abstract Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants. © 2020 John Wiley & Sons Ltd  
  Address Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09621083 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 975  
Permanent link to this record
 

 
Author Strasburg, J.L.; Scotti-Saintagne, C.; Scotti, I.; Lai, Z.; Rieseberg, L.H. openurl 
  Title Genomic Patterns of Adaptive Divergence between Chromosomally Differentiated Sunflower Species Type Journal Article
  Year 2009 Publication (down) Molecular Biology and Evolution Abbreviated Journal Mol. Biol. Evol.  
  Volume 26 Issue 6 Pages 1341-1355  
  Keywords species boundaries; chromosomal rearrangements; positive selection; hybridization; sunflowers; Helianthus  
  Abstract Understanding the genetic mechanisms of speciation and basis of species differences is among the most important challenges in evolutionary biology. Two questions of particular interest are what roles divergent selection and chromosomal differentiation play in these processes. A number of recently proposed theories argue that chromosomal rearrangements can facilitate the development and maintenance of reproductive isolation and species differences by suppressing recombination within rearranged regions. Reduced recombination permits the accumulation of alleles contributing to isolation and adaptive differentiation and protects existing differences from the homogenizing effects of introgression between incipient species. Here, we examine patterns of genetic diversity and divergence in rearranged versus collinear regions in two widespread, extensively hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris, using sequence data from 77 loci distributed throughout the genomes of the two species. We find weak evidence for increased genetic divergence near chromosomal break points but not within rearranged regions overall. We find no evidence for increased rates of adaptive divergence on rearranged chromosomes; in fact, collinear chromosomes show a far greater excess of fixed amino acid differences between the two species. A comparison with a third sunflower species indicates that much of the nonsynonymous divergence between H. annuus and H. petiolaris probably occurred during or soon after their formation. Our results suggest a limited role for chromosomal rearrangements in genetic divergence, but they do document substantial adaptive divergence and provide further evidence of how species integrity and genetic identity can be maintained at many loci in the face of extensive hybridization and gene flow.  
  Address [Strasburg, Jared L.; Scotti-Saintagne, Caroline; Rieseberg, Loren H.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA, Email: jstrasbu@indiana.edu  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0737-4038 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000266116500012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 111  
Permanent link to this record
 

 
Author Rey, O.; Loiseau, A.; Facon, B.; Foucaud, J.; Orivel, J.; Cornuet, J.M.; Robert, S.; Dobigny, G.; Delabie, J.H.C.; Mariano, C.D.F.; Estoup, A. openurl 
  Title Meiotic Recombination Dramatically Decreased in Thelytokous Queens of the Little Fire Ant and Their Sexually Produced Workers Type Journal Article
  Year 2011 Publication (down) Molecular Biology and Evolution Abbreviated Journal Mol. Biol. Evol.  
  Volume 28 Issue 9 Pages 2591-2601  
  Keywords parthenogenesis; thelytoky; recombination; inbreeding; biological invasion; Wasmannia auropunctata  
  Abstract The little fire ant, Wasmannia auropunctata, displays a peculiar breeding system polymorphism. Classical haplo-diploid sexual reproduction between reproductive individuals occurs in some populations, whereas, in others, queens and males reproduce clonally. Workers are produced sexually and are sterile in both clonal and sexual populations. The evolutionary fate of the clonal lineages depends strongly on the underlying mechanisms allowing reproductive individuals to transmit their genomes to subsequent generations. We used several queen-offspring data sets to estimate the rate of transition from heterozygosity to homozygosity associated with recombination events at 33 microsatellite loci in thelytokous parthenogenetic queen lineages and compared these rates with theoretical expectations under various parthenogenesis mechanisms. We then used sexually produced worker families to define linkage groups for these 33 loci and to compare meiotic recombination rates in sexual and parthenogenetic queens. Our results demonstrate that queens from clonal populations reproduce by automictic parthenogenesis with central fusion. These same parthenogenetic queens produce normally segregating meiotic oocytes for workers, which display much lower rates of recombination (by a factor of 45) than workers produced by sexual queens. These low recombination rates also concern the parthenogenetic production of queen offspring, as indicated by the very low rates of transition from heterozygosity to homozygosity observed (from 0% to 2.8%). We suggest that the combination of automixis with central fusion and a major decrease in recombination rates allows clonal queens to benefit from thelytoky while avoiding the potential inbreeding depression resulting from the loss of heterozygosity during automixis. In sterile workers, the strong decrease of recombination rates may also facilitate the conservation over time of some coadapted allelic interactions within chromosomes that might confer an adaptive advantage in habitats disturbed by human activity, where clonal populations of W. auropunctata are mostly found.  
  Address [Rey, O; Loiseau, A; Facon, B; Foucaud, J; Cornuet, JM; Robert, S; Dobigny, G] INRA, UMR Ctr Biol Gest Populat INRA IRD CIRAD Montpe, Montferrier Sur Lez, France, Email: olivier.rey@supagro.inra.fr  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0737-4038 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294552700019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 339  
Permanent link to this record
 

 
Author Picard, N.; Gourlet-Fleury, S.; Sist, P. openurl 
  Title Using process-dependent groups of species to model the dynamics of a tropical rainforest Type Journal Article
  Year 2003 Publication (down) Modelling Forest Systems Abbreviated Journal  
  Volume Issue Pages 237-248  
  Keywords  
  Abstract The high tree species diversity in tropical forests is difficult to take into account in models. The usual solution consists of defining groups of species and then adjusting a set of parameters for each group. In this study, we address this issue by allowing a species to move from one species group to another, depending on the biological process that is concerned. We developed this approach with a matrix model of forest dynamics, for a tropical rainforest in French Guiana, at Paracou, focusing on the methodological aspects. The forest dynamics is split into three components: recruitment, growth and mortality. We then built five recruitment groups, five growth groups and five mortality groups. One species is characterized by a combination of the three groups, thus yielding in total 5 X 5 X 5 = 125 possibilities, out of which 43 are actually observed. The resulting matrix model provides a better view of the floristic composition of the forest, and does not have more parameters than it would have with five global species groups. However, its predictions are no more precise than those of the matrix model based on five global groups.  
  Address Cirad Foret, Montpellier, France  
  Corporate Author Thesis  
  Publisher CABI PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000231866400021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 249  
Permanent link to this record
 

 
Author Schimann, H.; Bach, C.; Lengelle, J.; Louisanna, E.; Barantal, S.; Murat, C.; Buée, M. url  doi
openurl 
  Title Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence Type Journal Article
  Year 2017 Publication (down) Microbial Ecology Abbreviated Journal Microbial Ecology  
  Volume 73 Issue 2 Pages 310-320  
  Keywords Amazonian forest; Fungal communities; Host recurrence; Litter; Second-generation sequencing; Soil  
  Abstract The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems. © 2016, Springer Science+Business Media New York.  
  Address Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et Pays de l’Adour, Pau, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 19 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 734  
Permanent link to this record
 

 
Author Perrot, T.; Guillaume, S.; Nadine, A.; Jacques, B.; Philippe, G.; Stéphane, D.; Rodnay, S.; Mélanie, M.-R.; Eric, G. doi  openurl
  Title A reverse chemical ecology approach to explore wood natural durability Type Journal Article
  Year 2020 Publication (down) Microbial Biotechnology Abbreviated Journal Microb. Biotechnol.  
  Volume 13 Issue 5 Pages 1673-1677  
  Keywords glutathione transferase; Article; biodegradation; data base; detoxification; ecology; enzyme activity; enzyme metabolism; forest; molecular dynamics; physical parameters; species identification; thermal analysis; Trametes versicolor; wood; wood durability  
  Abstract The natural durability of wood species, defined as their inherent resistance to wood-destroying agents, is a complex phenomenon depending on many biotic and abiotic factors. Besides the presence of recalcitrant polymers, the presence of compounds with antimicrobial properties is known to be important to explain wood durability. Based on the advancement in our understanding of fungal detoxification systems, a reverse chemical ecology approach was proposed to explore wood natural durability using fungal glutathione transferases. A set of six glutathione transferases from the white-rot Trametes versicolor were used as targets to test wood extracts from seventeen French Guiana neotropical species. Fluorescent thermal shift assays quantified interactions between fungal glutathione transferases and these extracts. From these data, a model combining this approach and wood density significantly predicts the wood natural durability of the species tested previously using long-term soil bed tests. Overall, our findings confirm that detoxification systems could be used to explore the chemical environment encountered by wood-decaying fungi and also wood natural durability. © 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.  
  Address Université de Lorraine, INRAE, LERMAB, Nancy, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17517907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 955  
Permanent link to this record
 

 
Author Molto, Q.; Rossi, V.; Blanc, L. url  openurl
  Title Error propagation in biomass estimation in tropical forests Type Journal Article
  Year 2013 Publication (down) Methods in Ecology and Evolution Abbreviated Journal  
  Volume 4 Issue 2 Pages 175-183  
  Keywords Bayesian framework; Modelling; Redd; Uncertainty propagation  
  Abstract Reliable above-ground biomass (AGB) estimates are required for studies of carbon fluxes and stocks. However, there is a huge lack of knowledge concerning the precision of AGB estimates and the sources of this uncertainty. At the tree level, the tree height is predicted using the tree diameter at breast height (DBH) and a height sub-model. The wood-specific gravity (WSG) is predicted with taxonomic information and a WSG sub-model. The tree mass is predicted using the predicted height, the predicted WSG and the biomass sub-model. Our models were inferred with Bayesian methods and the uncertainty propagated with a Monte Carlo scheme. The uncertainties in the predictions of tree height, tree WSG and tree mass were neglected sequentially to quantify their contributions to the uncertainty in AGB. The study was conducted in French Guiana where long-term research on forest ecosystems provided an outstanding data collection on tree height, tree dynamics, tree mass and species WSG. We found that the uncertainty in the AGB estimates was found to derive primarily from the biomass sub-model. The models used to predict the tree heights and WSG contributed negligible uncertainty to the final estimate. Considering our results, a poor knowledge of WSG and the height-diameter relationship does not increase the uncertainty in AGB estimates. However, it could lead to bias. Therefore, models and databases should be used with care. This study provides a methodological framework that can be broadly used by foresters and plant ecologist. It provides the accurate confidence intervals associated with forest AGB estimates made from inventory data. When estimating region-scale AGB values (through spatial interpolation, spatial modelling or satellite signal treatment), the uncertainty of the forest AGB value in the reference forest plots has to be taken in account. We believe that in the light of the Reducing Emissions from Deforestation and Degradation debate, our method is a crucial step in monitoring carbon stocks and their spatio-temporal evolution. © 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society.  
  Address CIRAD, UMR 'Ecologie des Forêts de Guyane', Kourou Cedex, 97 379, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 February 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 470  
Permanent link to this record
 

 
Author Mortier, F.; Rossi, V.; Guillot, G.; Gourlet-Fleury, S.; Picard, N. url  openurl
  Title Population dynamics of species-rich ecosystems: The mixture of matrix population models approach Type Journal Article
  Year 2013 Publication (down) Methods in Ecology and Evolution Abbreviated Journal Methods Ecol. Evol.  
  Volume 4 Issue 4 Pages 316-326  
  Keywords Bayesian; Clustering; Mixture models; Population dynamics; Reversible jump Markov chain Monte Carlo; Species-rich ecosystems; Tropical rain forests  
  Abstract Matrix population models are widely used to predict population dynamics, but when applied to species-rich ecosystems with many rare species, the small population sample sizes hinder a good fit of species-specific models. This issue can be overcome by assigning species to groups to increase the size of the calibration data sets. However, the species classification is often disconnected from the matrix modelling and from the estimation of matrix parameters, thus bringing species groups that may not be optimal with respect to the predicted community dynamics. We proposed here a method that jointly classified species into groups and fit the matrix models in an integrated way. The model was a special case of mixture with unknown number of components and was cast in a Bayesian framework. An MCMC algorithm was developed to infer the unknown parameters: the number of groups, the group of each species and the dynamics parameters. We applied the method to simulated data and showed that the algorithm efficiently recovered the model parameters. We applied the method to a data set from a tropical rain forest in French Guiana. The mixture matrix model classified tree species into well-differentiated groups with clear ecological interpretations. It also accurately predicted the forest dynamics over the 16-year observation period. Our model and algorithm can straightforwardly be adapted to any type of matrix model, using the life cycle diagram. It can be used as an unsupervised classification technique to group species with similar population dynamics. © 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society.  
  Address Statistics Section IMM, Technical University of Denmark, Copenhagen, Denmark  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041210x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 April 2013; Source: Scopus; :doi 10.1111/2041-210x.12019; Language of Original Document: English; Correspondence Address: Mortier, F.; CIRAD, UPR Bsef, Montpellier, 34398, France; email: frederic.mortier@cirad.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 480  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: