toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brienen, R.J.W.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragaõ, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Arroyo, L.; Aymard C., G.A.; Bánki, O.S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R.G.A.; Camargo, J.L.C.; Castilho, C.V.; Chama, V.; Chao, K.J.; Chave, J.; Comiskey, J.A.; Cornejo Valverde, F.; Da Costa, L.; De Oliveira, E.A.; Di Fiore, A.; Erwin, T.L.; Fauset, S.; Forsthofer, M.; Galbraith, D.R.; Grahame, E.S.; Groot, N.; Herault, B.; Higuchi, N.; Honorio Coronado, E.N.; Keeling, H.; Killeen, T.J.; Laurance, W.F.; Laurance, S.; Licona, J.; Magnussen, W.E.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza, C.; Neill, D.A.; Nogueira, E.M.; Núñez, P.; Pallqui Camacho, N.C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Penã-Claros, M.; Pickavance, G.C.; Pitman, N.C.A.; Poorter, L.; Prieto, A.; Quesada, C.A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomaõ, R.P.; Schwarz, M.; Silva, N.; Silva-Espejo, J.E.; Silveira, M.; Stropp, J.; Talbot, J.; Ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, R.K.; Van Der Heijden, G.M.F.; Van Der Hout, P.; Guimarães Vieira, I.C.; Vieira, S.A.; Vilanova, E.; Vos, V.A.; Zagt, R.J. url  openurl
  Title Long-term decline of the Amazon carbon sink Type Journal Article
  Year 2015 Publication (up) Nature Abbreviated Journal Nature  
  Volume 519 Issue 7543 Pages 344-348  
  Keywords  
  Abstract Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models. © 2015 2015 Macmillan Publishers Limited.  
  Address Centro de Investigación y Promoción Del Campesinado, C/Nicanor Gonzalo Salvatierra Nu 362Riberalta, Bolivia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 591  
Permanent link to this record
 

 
Author Kunstler, G.; Falster, D.; Coomes, D.A.; Hui, F.; Kooyman, R.M.; Laughlin, D.C.; Poorter, L.; Vanderwel, M.; Vieilledent, G.; Wright, S.J.; Aiba, M.; Baraloto, C.; Caspersen, J.; Cornelissen, J.H.C.; Gourlet-Fleury, S.; Hanewinkel, M.; Herault, B.; Kattge, J.; Kurokawa, H.; Onoda, Y.; Peñuelas, J.; Poorter, H.; Uriarte, M.; Richardson, S.; Ruiz-Benito, P.; Sun, I.-F.; Ståhl, G.; Swenson, N.G.; Thompson, J.; Westerlund, B.; Wirth, C.; Zavala, M.A.; Zeng, H.; Zimmerman, J.K.; Zimmermann, N.E.; Westoby, M. url  openurl
  Title Plant functional traits have globally consistent effects on competition Type Journal Article
  Year 2016 Publication (up) Nature Abbreviated Journal Nature  
  Volume 529 Issue 7585 Pages 204-207  
  Keywords  
  Abstract Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits – wood density, specific leaf area and maximum height – consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition. © 2016 Macmillan Publishers Limited. All rights reserved.  
  Address Forestry and Forest Products Research Institute, Tsukuba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 29 January 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 653  
Permanent link to this record
 

 
Author Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; Garnier, E.; Bönisch, G.; Westoby, M.; Poorter, H.; Reich, P.B.; Moles, A.T.; Dickie, J.; Gillison, A.N.; Zanne, A.E.; Chave, J.; Joseph Wright, S.; Sheremet’ev, S.N.; Jactel, H.; Baraloto, C.; Cerabolini, B.; Pierce, S.; Shipley, B.; Kirkup, D.; Casanoves, F.; Joswig, J.S.; Günther, A.; Falczuk, V.; Rüger, N.; Mahecha, M.D.; Gorné, L.D. doi  openurl
  Title The global spectrum of plant form and function Type Journal Article
  Year 2016 Publication (up) Nature Abbreviated Journal Nature  
  Volume 529 Issue 7585 Pages 167-171  
  Keywords  
  Abstract Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 654  
Permanent link to this record
 

 
Author Seibold, Sebastien ; Rammer, Werner ; Hothorn, Torsten ; Seidl, Rupert ; Ulyshen, Michael ; Lorz, Janina ; Cadotte, Marc ; Lindenmayer, David ; Adhikari, Yagya ; Aragón, Roxana ; Bae, Soyeon ; Baldrian, Petr ; Barimani Varandi, Hassan ; Barlow, Jos ; Bässler, Clauss ; Beauchêne, Jacques ; and all ................... doi  openurl
  Title The contribution of insects to global forest deadwood decomposition Type Journal Article
  Year 2021 Publication (up) Nature Abbreviated Journal  
  Volume 597 Issue 7874 Pages 77-81  
  Keywords  
  Abstract The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.  
  Address  
  Corporate Author Thesis  
  Publisher NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1046  
Permanent link to this record
 

 
Author Migliavacca, Mirco ; Musavi, Talie ; Mahecha, Miguel D. ; Nelson, Jacob A. ; Knauer, Jurgen ; Baldocchi, Dennis D. ; Perez-Priego, Oscar ; Christiansen, Rune ; Peters, Jonas ; Anderson, Karen ; Bahn, Michael ; Black, T. Andrew ; Blanken, Peter D. ; and all .................. doi  openurl
  Title The three major axes of terrestrial ecosystem function Type Journal Article
  Year 2021 Publication (up) Nature Abbreviated Journal  
  Volume 598 Issue 7881 Pages 468-472  
  Keywords  
  Abstract The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range o  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1044  
Permanent link to this record
 

 
Author Duplais, Christophe ; Sarou-Kanian, Vincent ; Massiot, Dominique ; Hassan, Alia ; Perrone, Barbara ; Estevez, Yannick ; Wertz, John; Martineau, Estelle ; Farjon, Jonathan ; Giraudeau, Patrick, Moreau, Carrie S. doi  openurl
  Title Gut bacteria are essential for normal cutile development in herbivorous turtle ants Type Journal Article
  Year 2021 Publication (up) Nature Communication Abbreviated Journal  
  Volume 12 Issue Pages 1-6  
  Keywords  
  Abstract Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation, 15N isotopic enrichment, isotope-ratio mass spectrometry, and 15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.  
  Address  
  Corporate Author Thesis  
  Publisher NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Anglais Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1005  
Permanent link to this record
 

 
Author Fauset, S.; Johnson, M.O.; Gloor, M.; Baker, T.R.; Monteagudo M., A.; Brienen, R.J.W.; Feldpausch, T.R.; Lopez-Gonzalez, G.; Malhi, Y.; Ter Steege, H.; Pitman, N.C.A.; Baraloto, C.; Engel, J.; Petronelli, P.; Andrade, A.; Camargo, J.L.C.; Laurance, S.G.W.; Laurance, W.F.; Chave, J.; Allie, E.; Vargas, P.N.; Terborgh, J.W.; Ruokolainen, K.; Silveira, M.; Aymard C., G.A.; Arroyo, L.; Bonal, D.; Ramirez-Angulo, H.; Araujo-Murakami, A.; Neill, D.; Herault, B.; Dourdain, A.; Torres-Lezama, A.; Marimon, B.S.; Salomão, R.P.; Comiskey, J.A.; Réjou-Méchain, M.; Toledo, M.; Licona, J.C.; Alarcón, A.; Prieto, A.; Rudas, A.; Van Der Meer, P.J.; Killeen, T.J.; Marimon Junior, B.-H.; Poorter, L.; Boot, R.G.A.; Stergios, B.; Torre, E.V.; Costa, F.R.C.; Levis, C.; Schietti, J.; Souza, P.; Groot, N.; Arets, E.; Moscoso, V.C.; Castro, W.; Coronado, E.N.H.; Peña-Claros, M.; Stahl, C.; Barroso, J.; Talbot, J.; Vieira, I.C.G.; Van Der Heijden, G.; Thomas, R.; Vos, V.A.; Almeida, E.C.; Davila, E.Á.; Aragão, L.E.O.C.; Erwin, T.L.; Morandi, P.S.; De Oliveira, E.A.; Valadão, M.B.X.; Zagt, R.J.; Van Der Hout, P.; Loayza, P.A.; Pipoly, J.J.; Wang, O.; Alexiades, M.; Cerón, C.E.; Huamantupa-Chuquimaco, I.; Di Fiore, A.; Peacock, J.; Camacho, N.C.P.; Umetsu, R.K.; De Camargo, P.B.; Burnham, R.J.; Herrera, R.; Quesada, C.A.; Stropp, J.; Vieira, S.A.; Steininger, M.; Rodríguez, C.R.; Restrepo, Z.; Muelbert, A.E.; Lewis, S.L.; Pickavance, G.C.; Phillips, O.L. pdf  url
openurl 
  Title Hyperdominance in Amazonian forest carbon cycling Type Journal Article
  Year 2015 Publication (up) Nature Communications Abbreviated Journal Nature Communications  
  Volume 6 Issue 6857 Pages  
  Keywords  
  Abstract While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few â € hyperdominantâ €™ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only â ‰1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. © 2015 Macmillan Publishers Limited. All rights reserved.  
  Address Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 May 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 602  
Permanent link to this record
 

 
Author Romero, G.Q.; Marino, N.A.C.; MacDonald, A.A.M.; Céréghino, R.; Trzcinski, M.K.; Mercado, D.A.; Leroy, C.; Corbara, B.; Farjalla, V.F.; Barberis, I.M.; Dézerald, O.; Hammill, E.; Atwood, T.B.; Piccoli, G.C.O.; Bautista, F.O.; Carrias, J.-F.; Leal, J.S.; Montero, G.; Antiqueira, P.A.P.; Freire, R.; Realpe, E.; Amundrud, S.L.; de Omena, P.M.; Campos, A.B.A.; Kratina, P.; O’Gorman, E.J.; Srivastava, D.S. doi  openurl
  Title Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics Type Journal Article
  Year 2020 Publication (up) Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 11 Issue 3215 Pages  
  Keywords fresh water; rain; fresh water; agricultural intensification; angiosperm; biomass; climate change; ecosystem function; extreme event; food web; freshwater ecosystem; Neotropic Ecozone; precipitation intensity; rainfall; trophic structure; Article; biomass; Central America; controlled study; detritivore; drought; flooding; food web; hydrology; microcosm; Neotropics; nonhuman; precipitation; predator; South America; trophic level; animal; biodiversity; Bromelia; climate change; ecosystem; flooding; food chain; Central America; South America; Animals; Biodiversity; Biomass; Bromelia; Climate Change; Droughts; Ecosystem; Floods; Food Chain; Fresh Water; Hydrology; South America  
  Abstract Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics. © 2020, The Author(s).  
  Address Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20411723 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 944  
Permanent link to this record
 

 
Author Esquivel-Muelbert, A.; Phillips, O.L.; Brienen, R.J.W.; Fauset, S.; Sullivan, M.J.P.; Baker, T.R.; Chao, K.-J.; Feldpausch, T.R.; Gloor, E.; Higuchi, N.; Houwing-Duistermaat, J.; Lloyd, J.; Liu, H.; Malhi, Y.; Marimon, B.; Marimon Junior, B.H.; Monteagudo-Mendoza, A.; Poorter, L.; Silveira, M.; Torre, E.V.; Dávila, E.A.; del Aguila Pasquel, J.; Almeida, E.; Loayza, P.A.; Andrade, A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.; Arroyo, L.; Aymard C, G.A.; Baisie, M.; Baraloto, C.; Camargo, P.B.; Barroso, J.; Blanc, L.; Bonal, D.; Bongers, F.; Boot, R.; Brown, F.; Burban, B.; Camargo, J.L.; Castro, W.; Moscoso, V.C.; Chave, J.; Comiskey, J.; Valverde, F.C.; da Costa, A.L.; Cardozo, N.D.; Di Fiore, A.; Dourdain, A.; Erwin, T.; Llampazo, G.F.; Vieira, I.C.G.; Herrera, R.; Honorio Coronado, E.; Huamantupa-Chuquimaco, I.; Jimenez-Rojas, E.; Killeen, T.; Laurance, S.; Laurance, W.; Levesley, A.; Lewis, S.L.; Ladvocat, K.L.L.M.; Lopez-Gonzalez, G.; Lovejoy, T.; Meir, P.; Mendoza, C.; Morandi, P.; Neill, D.; Nogueira Lima, A.J.; Vargas, P.N.; de Oliveira, E.A.; Camacho, N.P.; Pardo, G.; Peacock, J.; Peña-Claros, M.; Peñuela-Mora, M.C.; Pickavance, G.; Pipoly, J.; Pitman, N.; Prieto, A.; Pugh, T.A.M.; Quesada, C.; Ramirez-Angulo, H.; de Almeida Reis, S.M.; Rejou-Machain, M.; Correa, Z.R.; Bayona, L.R.; Rudas, A.; Salomão, R.; Serrano, J.; Espejo, J.S.; Silva, N.; Singh, J.; Stahl, C.; Stropp, J.; Swamy, V.; Talbot, J.; ter Steege, H.; Terborgh, J.; Thomas, R.; Toledo, M.; Torres-Lezama, A.; Gamarra, L.V.; van der Heijden, G.; van der Meer, P.; van der Hout, P.; Martinez, R.V.; Vieira, S.A.; Cayo, J.V.; Vos, V.; Zagt, R.; Zuidema, P.; Galbraith, D. doi  openurl
  Title Tree mode of death and mortality risk factors across Amazon forests Type Journal Article
  Year 2020 Publication (up) Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 11 Issue 5515 Pages  
  Keywords bioclimatology; carbon sink; ecological modeling; growth; holistic approach; mortality; mortality risk; risk factor; survival; trade-off; tropical forest; article; climate; controlled study; forest; growth rate; human; mortality rate; mortality risk; survival; biological model; biomass; Brazil; carbon sequestration; ecology; ecosystem; environmental monitoring; growth, development and aging; proportional hazards model; risk factor; tree; tropic climate; Amazonia; carbon dioxide; Biomass; Brazil; Carbon Dioxide; Carbon Sequestration; Ecology; Ecosystem; Environmental Monitoring; Forests; Models, Biological; Proportional Hazards Models; Risk Factors; Trees; Tropical Climate  
  Abstract The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted—modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth–survival trade-off in driving tropical tree mortality. © 2020, The Author(s).  
  Address Tropenbos International, Wageningen, Netherlands  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20411723 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 945  
Permanent link to this record
 

 
Author Thomas, H.J.D.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Kattge, J.; Diaz, S.; Vellend, M.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; Henry, G.H.R.; Hollister, R.D.; Normand, S.; Prevéy, J.S.; Rixen, C.; Schaepman-Strub, G.; Wilmking, M.; Wipf, S.; Cornwell, W.K.; Beck, P.S.A.; Georges, D.; Goetz, S.J.; Guay, K.C.; Rüger, N.; Soudzilovskaia, N.A.; Spasojevic, M.J.; Alatalo, J.M.; Alexander, H.D.; Anadon-Rosell, A.; Angers-Blondin, S.; te Beest, M.; Berner, L.T.; Björk, R.G.; Buchwal, A.; Buras, A.; Carbognani, M.; Christie, K.S.; Collier, L.S.; Cooper, E.J.; Elberling, B.; Eskelinen, A.; Frei, E.R.; Grau, O.; Grogan, P.; Hallinger, M.; Heijmans, M.M.P.D.; Hermanutz, L.; Hudson, J.M.G.; Johnstone, J.F.; Hülber, K.; Iturrate-Garcia, M.; Iversen, C.M.; Jaroszynska, F.; Kaarlejarvi, E.; Kulonen, A.; Lamarque, L.J.; Lantz, T.C.; Lévesque, E.; Little, C.J.; Michelsen, A.; Milbau, A.; Nabe-Nielsen, J.; Nielsen, S.S.; Ninot, J.M.; Oberbauer, S.F.; Olofsson, J.; Onipchenko, V.G.; Petraglia, A.; Rumpf, S.B.; Shetti, R.; Speed, J.D.M.; Suding, K.N.; Tape, K.D.; Tomaselli, M.; Trant, A.J.; Treier, U.A.; Tremblay, M.; Venn, S.E.; Vowles, T.; Weijers, S.; Wookey, P.A.; Zamin, T.J.; Bahn, M.; Blonder, B.; van Bodegom, P.M.; Bond-Lamberty, B.; Campetella, G.; Cerabolini, B.E.L.; Chapin, F.S., III; Craine, J.M.; Dainese, M.; Green, W.A.; Jansen, S.; Kleyer, M.; Manning, P.; Niinemets, Ü.; Onoda, Y.; Ozinga, W.A.; Peñuelas, J.; Poschlod, P.; Reich, P.B.; Sandel, B.; Schamp, B.S.; Sheremetiev, S.N.; de Vries, F.T. doi  openurl
  Title Global plant trait relationships extend to the climatic extremes of the tundra biome Type Journal Article
  Year 2020 Publication (up) Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 11 Issue 1351 Pages  
  Keywords biome; climate change; extreme event; global change; growth; interspecific interaction; plant community; tundra; article; plant community; prediction; tundra; warming; classification; climate; ecosystem; genetics; plant; plant development; Climate; Ecosystem; Plant Development; Plants; Tundra  
  Abstract The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world. © 2020, Crown.  
  Address Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, Amsterdam, 1090 GE, Netherlands  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20411723 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 947  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: