|   | 
Details
   web
Records
Author Zinger, L.; Taberlet, P.; Schimann, H.; Bonin, A.; Boyer, F.; De Barba, M.; Gaucher, P.; Gielly, L.; Giguet-Covex, C.; Iribar, A.; Réjou-Méchain, M.; Rayé, G.; Rioux, D.; Schilling, V.; Tymen, B.; Viers, J.; Zouiten, C.; Thuiller, W.; Coissac, E.; Chave, J.
Title Body size determines soil community assembly in a tropical forest Type Journal Article
Year 2019 Publication (up) Molecular Ecology Abbreviated Journal Mol Ecol
Volume 28 Issue 3 Pages 528-543
Keywords DNA metabarcoding; eDNA; French Guiana; multitaxa; neutral assembly; niche determinism; propagule size; soil diversity
Abstract Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic?distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-1083 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 873
Permanent link to this record
 

 
Author Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.; de-Miguel, S.; Zhou, M.; Picard, N.; Herault, B.; Zhao, X.; Zhang, C.; Routh, D.; Peay, K.G.; Abegg, M.; Adou Yao, C.Y.; Alberti, G.; Almeyda Zambrano, A.; Alvarez-Davila, E.; Alvarez-Loayza, P.; Alves, L.F.; Ammer, C.; Antón-Fernández, C.; Araujo-Murakami, A.; Arroyo, L.; Avitabile, V.; Aymard, G.; Baker, T.; Bałazy, R.; Banki, O.; Barroso, J.; Bastian, M.; Bastin, J.-F.; Birigazzi, L.; Birnbaum, P.; Bitariho, R.; Boeckx, P.; Bongers, F.; Bouriaud, O.; Brancalion, P.H.S.; Brandl, S.; Brearley, F.Q.; Brienen, R.; Broadbent, E.; Bruelheide, H.; Bussotti, F.; Cazzolla Gatti, R.; Cesar, R.; Cesljar, G.; Chazdon, R.; Chen, H.Y.H.; Chisholm, C.; Cienciala, E.; Clark, C.J.; Clark, D.; Colletta, G.; Condit, R.; Coomes, D.; Cornejo Valverde, F.; Corral-Rivas, J.J.; Crim, P.; Cumming, J.; Dayanandan, S.; de Gasper, A.L.; Decuyper, M.; Derroire, G.; DeVries, B.; Djordjevic, I.; Iêda, A.; Dourdain, A.; Obiang, N.L.E.; Enquist, B.; Eyre, T.; Fandohan, A.B.; Fayle, T.M.; Feldpausch, T.R.; Finér, L.; Fischer, M.; Fletcher, C.; Fridman, J.; Frizzera, L.; Gamarra, J.G.P.; Gianelle, D.; Glick, H.B.; Harris, D.; Hector, A.; Hemp, A.; Hengeveld, G.; Herbohn, J.; Herold, M.; Hillers, A.; Honorio Coronado, E.N.; Huber, M.; Hui, C.; Cho, H.; Ibanez, T.; Jung, I.; Imai, N.; Jagodzinski, A.M.; Jaroszewicz, B.; Johannsen, V.; Joly, C.A.; Jucker, T.; Karminov, V.; Kartawinata, K.; Kearsley, E.; Kenfack, D.; Kennard, D.; Kepfer-Rojas, S.; Keppel, G.; Khan, M.L.; Killeen, T.; Kim, H.S.; Kitayama, K.; Köhl, M.; Korjus, H.; Kraxner, F.; Laarmann, D.; Lang, M.; Lewis, S.; Lu, H.; Lukina, N.; Maitner, B.; Malhi, Y.; Marcon, E.; Marimon, B.S.; Marimon-Junior, B.H.; Marshall, A.R.; Martin, E.; Martynenko, O.; Meave, J.A.; Melo-Cruz, O.; Mendoza, C.; Merow, C.; Monteagudo Mendoza, A.; Moreno, V.; Mukul, S.A.; Mundhenk, P.; Nava-Miranda, M.G.; Neill, D.; Neldner, V.; Nevenic, R.; Ngugi, M.; Niklaus, P.; Oleksyn, J.; Ontikov, P.; Ortiz-Malavasi, E.; Pan, Y.; Paquette, A.; Parada-Gutierrez, A.; Parfenova, E.; Park, M.; Parren, M.; Parthasarathy, N.; Peri, P.L.; Pfautsch, S.; Phillips, O.; Piedade, M.T.; Piotto, D.; Pitman, N.C.A.; Polo, I.; Poorter, L.; Poulsen, A.D.; Poulsen, J.R.; Pretzsch, H.; Ramirez Arevalo, F.; Restrepo-Correa, Z.; Rodeghiero, M.; Rolim, S.; Roopsind, A.; Rovero, F.; Rutishauser, E.; Saikia, P.; Saner, P.; Schall, P.; Schelhaas, M.-J.; Schepaschenko, D.; Scherer-Lorenzen, M.; Schmid, B.; Schöngart, J.; Searle, E.; Seben, V.; Serra-Diaz, J.M.; Salas-Eljatib, C.; Sheil, D.; Shvidenko, A.; Silva-Espejo, J.; Silveira, M.; Singh, J.; Sist, P.; Slik, F.; Sonké, B.; Souza, A.F.; Stereńczak, K.; Svenning, J.-C.; Svoboda, M.; Targhetta, N.; Tchebakova, N.; Steege, H.; Thomas, R.; Tikhonova, E.; Umunay, P.; Usoltsev, V.; Valladares, F.; van der Plas, F.; Van Do, T.; Vasquez Martinez, R.; Verbeeck, H.; Viana, H.; Vieira, S.; von Gadow, K.; Wang, H.-F.; Watson, J.; Westerlund, B.; Wiser, S.; Wittmann, F.; Wortel, V.; Zagt, R.; Zawila-Niedzwiecki, T.; Zhu, Z.-X.; Zo-Bi, I.C.; GFBI consortium
Title Climatic controls of decomposition drive the global biogeography of forest-tree symbioses Type Journal Article
Year 2019 Publication (up) Nature Abbreviated Journal Nature
Volume 569 Issue 7756 Pages 404-408
Keywords Fungi
Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
Address Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00280836 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 872
Permanent link to this record
 

 
Author Clair, B.; Ghislain, B.; Prunier, J.; Lehnebach, R.; Beauchene, J.; Alméras, T.
Title Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force Type Journal Article
Year 2019 Publication (up) New Phytologist Abbreviated Journal New Phytol
Volume 221 Issue 1 Pages 209-217
Keywords bark; Malvaceae; maturation stress; secondary phloem; tree biomechanics
Abstract Summary To grow straight, plants need a motor system that controls posture by generating forces to offset gravity. This motor function in trees was long thought to be only controlled by internal forces induced in wood. Here we provide evidence that bark is involved in the generation of mechanical stresses in several tree species. Saplings of nine tropical species were grown tilted and staked in a shadehouse and the change in curvature of the stem was measured after releasing from the pole and after removing the bark. This first experiment evidenced the contribution of bark in the up-righting movement of tree stems. Combined mechanical measurements of released strains on adult trees and microstructural observations in both transverse and longitudinal/tangential plane enabled us to identify the mechanism responsible for the development of asymmetric mechanical stress in the bark of stems of these species. This mechanism does not result from cell wall maturation like in wood, or from the direct action of turgor pressure like in unlignified organs, but is the consequence of the interaction between wood radial pressure and a smartly organized trellis structure in the inner bark.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/nph.15375 Approved no
Call Number EcoFoG @ webmaster @ Serial 853
Permanent link to this record
 

 
Author Fichaux, M.; Béchade, B.; Donald, J.; Weyna, A.; Delabie, J.H.C.; Murienne, J.; Baraloto, C.; Orivel, J.
Title Habitats shape taxonomic and functional composition of Neotropical ant assemblages Type Journal Article
Year 2019 Publication (up) Oecologia Abbreviated Journal Oecologia
Volume 189 Issue 2 Pages 501-513
Keywords Formicidae; Functional diversity; Habitat filtering; Rainforest; Traits; Formicidae
Abstract Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.
Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
Corporate Author Thesis
Publisher Springer Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00298549 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 863
Permanent link to this record
 

 
Author Grossiord, C.; Christoffersen, B.; Alonso-Rodríguez, A.M.; Anderson-Teixeira, K.; Asbjornsen, H.; Aparecido, L.M.T.; Carter Berry, Z.; Baraloto, C.; Bonal, D.; Borrego, I.; Burban, B.; Chambers, J.Q.; Christianson, D.S.; Detto, M.; Faybishenko, B.; Fontes, C.G.; Fortunel, C.; Gimenez, B.O.; Jardine, K.J.; Kueppers, L.; Miller, G.R.; Moore, G.W.; Negron-Juarez, R.; Stahl, C.; Swenson, N.G.; Trotsiuk, V.; Varadharajan, C.; Warren, J.M.; Wolfe, B.T.; Wei, L.; Wood, T.E.; Xu, C.; McDowell, N.G.
Title Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics Type Journal Article
Year 2019 Publication (up) Oecologia Abbreviated Journal Oecologia
Volume 191 Issue 3 Pages 519-530
Keywords Evapotranspiration; Plant functional traits; Transpiration; Vapor pressure deficit; drought; evapotranspiration; flux measurement; hydrological cycle; Neotropical Region; precipitation (chemistry); precipitation (climatology); tree; tropical forest; tropical region; vapor pressure; water; drought; evapotranspiration; forest; tree; vapor pressure; Droughts; Forests; Plant Transpiration; Trees; Vapor Pressure; Water
Abstract Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Address Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
Corporate Author Thesis
Publisher Springer Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00298549 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 904
Permanent link to this record
 

 
Author Van Langenhove, L.; Depaepe, T.; Vicca, S.; van den Berge, J.; Stahl, C.; Courtois, E.; Weedon, J.; Urbina, I.; Grau, O.; Asensio, D.; Peñuelas, J.; Boeckx, P.; Richter, A.; Van Der Straeten, D.; Janssens, I.A.
Title Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield Type Journal Article
Year 2019 Publication (up) Plant and Soil Abbreviated Journal Plant Soil
Volume Issue Pages
Keywords Free-living nitrogen fixation; French Guiana; Molybdenum; Nutrients; Phosphorus; Tropical forest
Abstract Background and aims: Biological fixation of atmospheric nitrogen (N 2 ) is the main pathway for introducing N into unmanaged ecosystems. While recent estimates suggest that free-living N fixation (FLNF) accounts for the majority of N fixed in mature tropical forests, the controls governing this process are not completely understood. The aim of this study was to quantify FLNF rates and determine its drivers in two tropical pristine forests of French Guiana. Methods: We used the acetylene reduction assay to measure FLNF rates at two sites, in two seasons and along three topographical positions, and used regression analyses to identify which edaphic explanatory variables, including carbon (C), nitrogen (N), phosphorus (P) and molybdenum (Mo) content, pH, water and available N and P, explained most of the variation in FLNF rates. Results: Overall, FLNF rates were lower than measured in tropical systems elsewhere. In soils seasonal variability was small and FLNF rates differed among topographies at only one site. Water, P and pH explained 24% of the variation. In leaf litter, FLNF rates differed seasonally, without site or topographical differences. Water, C, N and P explained 46% of the observed variation. We found no regulatory role of Mo at our sites. Conclusions: Rates of FLNF were low in primary rainforest on poor soils on the Guiana shield. Water was the most important rate-regulating factor and FLNF increased with increasing P, but decreased with increasing N. Our results support the general assumption that N fixation in tropical lowland forests is limited by P availability. © 2019, The Author(s).
Address Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, Vienna, 1090, Austria
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032079x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 868
Permanent link to this record
 

 
Author Hofman, M.P.; Hayward, M.W.; Heim, M.; Marchand, P.; Rolandsen, C.M.; Mattisson, J.; Urbano, F.; Heurich, M.; Mysterud, A.; Melzheimer, J.; Morellet, N.; Voigt, U.; Allen, B.L.; Gehr, B.; Rouco, C.; Ullmann, W.; Holand, Ø.; Jørgensen, N.H.; Steinheim, G.; Cagnacci, F.; Kroeschel, M.; Kaczensky, P.; Buuveibaatar, B.; Payne, J.C.; Palmegiani, I.; Jerina, K.; Kjellander, P.; Johansson, Ö.; LaPoint, S.; Bayrakcismith, R.; Linnell, J.D.C.; Zaccaroni, M.; Jorge, M.L.S.; Oshima, J.E.F.; Songhurst, A.; Fischer, C.; Mc Bride, R.T., Jr.; Thompson, J.J.; Streif, S.; Sandfort, R.; Bonenfant, C.; Drouilly, M.; Klapproth, M.; Zinner, D.; Yarnell, R.; Stronza, A.; Wilmott, L.; Meisingset, E.; Thaker, M.; Vanak, A.T.; Nicoloso, S.; Graeber, R.; Said, S.; Boudreau, M.R.; Devlin, A.; Hoogesteijn, R.; May-Junior, J.A.; Nifong, J.C.; Odden, J.; Quigley, H.B.; Tortato, F.; Parker, D.M.; Caso, A.; Perrine, J.; Tellaeche, C.; Zieba, F.; Zwijacz-Kozica, T.; Appel, C.L.; Axsom, I.; Bean, W.T.; Cristescu, B.; Périquet, S.; Teichman, K.J.; Karpanty, S.; Licoppe, A.; Menges, V.; Black, K.; Scheppers, T.L.; Schai-Braun, S.C.; Azevedo, F.C.; Lemos, F.G.; Payne, A.; Swanepoel, L.H.; Weckworth, B.V.; Berger, A.; Bertassoni, A.; McCulloch, G.; Sustr, P.; Athreya, V.; Bockmuhl, D.; Casaer, J.; Ekori, A.; Melovski, D.; Richard-Hansen, C.; Van De Vyver, D.; Reyna-Hurtado, R.; Robardet, E.; Selva, N.; Sergiel, A.; Farhadinia, M.S.; Sunde, P.; Portas, R.; Ambarli, H.; Berzins, R.; Kappeler, P.M.; Mann, G.K.; Pyritz, L.; Bissett, C.; Grant, T.; Steinmetz, R.; Swedell, L.; Welch, R.J.; Armenteras, D.; Bidder, O.R.; González, T.M.; Rosenblatt, A.; Kachel, S.; Balkenhol, N.
Title Right on track? Performance of satellite telemetry in terrestrial wildlife research Type Journal Article
Year 2019 Publication (up) PLoS One Abbreviated Journal
Volume 14 Issue 5 Pages e0216223
Keywords article; nonhuman; telemetry; terrestrial species; wildlife
Abstract Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.
Address South African National Parks, Scientific Services, Kimberley, South Africa
Corporate Author Thesis
Publisher Public Library of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 19326203 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 874
Permanent link to this record
 

 
Author Peguero, G.; Sardans, J.; Asensio, D.; Fernández-Martínez, M.; Gargallo-Garriga, A.; Grau, O.; Llusià, J.; Margalef, O.; Márquez, L.; Ogaya, R.; Urbina, I.; Courtois, E.A.; Stahl, C.; Van Langenhove, L.; Verryckt, L.T.; Richter, A.; Janssens, I.A.; Peñuelas, J.
Title Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests Type Journal Article
Year 2019 Publication (up) Proceedings. Biological sciences Abbreviated Journal Proc. Biol. Sci.
Volume 286 Issue 1910 Pages 20191300
Keywords biogeochemistry; extracellular enzyme activity; litter decomposition; nutrients; soil fauna
Abstract Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.
Address Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1090, Austria
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14712954 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 884
Permanent link to this record
 

 
Author Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F.
Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
Year 2019 Publication (up) Remote Sensing Abbreviated Journal Remote Sens.
Volume 11 Issue 3 Pages 367
Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry
Abstract Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.
Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France
Corporate Author Thesis
Publisher Mdpi Ag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20724292 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email: florent.taureau@univ-nantes.fr; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no
Call Number EcoFoG @ webmaster @ Serial 861
Permanent link to this record
 

 
Author Marcon, E.
Title Entropy as a common measure of biodiversity and the spatial structure of economic activity Type Journal Article
Year 2019 Publication (up) Revue Economique Abbreviated Journal Rev. Econ.
Volume 70 Issue 3 Pages 305-326
Keywords Diversity; Economic geography; Spatial concentration; Specialization
Abstract Measures of spatial concentration and specialization in economics are similar to those of biodiversity and ubiquity of species in ecology. Entropy is the fundamental tool that originated in statistical physics and information theory. The definition of number equivalents or effective numbers, that is the number of types in an ideal, simplified distribution, is introduced along with the partitioning of the joint diversity of a bi-dimensional distribution into absolute and relative concentration or specialization and replication. The whole framework is theoretically robust and allows measuring the spatial structure of a discrete space.
Address AgroParisTech, UMR Écologie des forêts de Guyane, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Campus Agronomique, BP 701, Kourou, 97310, French Guiana
Corporate Author Thesis
Publisher Presses de Sciences Po Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00352764 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 912
Permanent link to this record