toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Longo, M.; Knox, R.G.; Levine, N.M.; Swann, A.L.S.; Medvigy, D.M.; Dietze, M.C.; Kim, Y.; Zhang, K.; Bonal, D.; Burban, B.; Camargo, P.B.; Hayek, M.N.; Saleska, S.R.; Da Silva, R.; Bras, R.L.; Wofsy, S.C.; Moorcroft, P.R. pdf  url
doi  openurl
  Title The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-Part 2: Model evaluation for tropical South America Type Journal Article
  Year 2019 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.  
  Volume 12 Issue 10 Pages 4347-4374  
  Keywords  
  Abstract The Ecosystem Demography model version 2.2 (ED-2.2) is a terrestrial biosphere model that simulates the biophysical, ecological, and biogeochemical dynamics of vertically and horizontally heterogeneous terrestrial ecosystems. In a companion paper (Longo et al., 2019a), we described how the model solves the energy, water, and carbon cycles, and verified the high degree of conservation of these properties in long-term simulations that include long-term (multi-decadal) vegetation dynamics. Here, we present a detailed assessment of the model's ability to represent multiple processes associated with the biophysical and biogeochemical cycles in Amazon forests. We use multiple measurements from eddy covariance towers, forest inventory plots, and regional remote-sensing products to assess the model's ability to represent biophysical, physiological, and ecological processes at multiple timescales, ranging from subdaily to century long. The ED-2.2 model accurately describes the vertical distribution of light, water fluxes, and the storage of water, energy, and carbon in the canopy air space, the regional distribution of biomass in tropical South America, and the variability of biomass as a function of environmental drivers. In addition, ED-2.2 qualitatively captures several emergent properties of the ecosystem found in observations, specifically observed relationships between aboveground biomass, mortality rates, and wood density; however, the slopes of these relationships were not accurately captured. We also identified several limitations, including the model's tendency to overestimate the magnitude and seasonality of heterotrophic respiration and to overestimate growth rates in a nutrient-poor tropical site. The evaluation presented here highlights the potential of incorporating structural and functional heterogeneity within biomes in Earth system models (ESMs) and to realistically represent their impacts on energy, water, and carbon cycles. We also identify several priorities for further model development.  
  Address Georgia Institute of Technology, Atlanta, GA, United States  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991959x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 27 October 2019; Correspondence Address: Longo, M.; Harvard UniversityUnited States; email: mdplongo@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 890  
Permanent link to this record
 

 
Author Baudrimont, M.; Arini, A.; Guégan, C.; Venel, Z.; Gigault, J.; Pedrono, B.; Prunier, J.; Maurice, L.; Ter Halle, A.; Feurtet-Mazel, A. url  doi
openurl 
  Title Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves) Type Journal Article
  Year 2020 Publication Environmental Science and Pollution Research Abbreviated Journal Environ. Sci. Pollut. Res.  
  Volume 27 Issue 4 Pages 3746-3755  
  Keywords Cordicula fluminea; Ecotoxicity; Nanoplastics; Polyethylene; Scenedesmus subspicatus; Thalassiosira weissiflogii; bivalve; concentration (composition); ecotoxicology; filter feeder; gyre; microalga; nanoparticle; plastic waste; pollution exposure; polymer; Atlantic Ocean; Atlantic Ocean (North); Bivalvia; Chlorophyta; Corbicula fluminea; Desmodesmus subspicatus; Nitzschia alba; Thalassiosira  
  Abstract Each year, 5 to 10 million tons of plastic waste is dumped in the oceans via freshwaters and accumulated in huge oceanic gyres. Under the effect of several abiotic factors, macro plastic wastes (or plastic wastes with macro sizes) are fractionated into microplastics (MP) and finally reach the nanometric size (nanoplastic NP). To reveal potential toxic impacts of these NPs, two microalgae, Scenedemus subspicatus (freshwater green algae), and Thalassiosira weissiflogii (marine diatom) were exposed for up to 48 h at 1, 10, 100, 1000, and 10,000 μg/L to reference polyethylene NPs (PER) or NPs made from polyethylene collected in the North Atlantic gyre (PEN, 7th continent expedition in 2015). Freshwater filter-feeding bivalves, Corbicula fluminea, were exposed to 1000 μg/L of PER and PEN for 48 h to study a possible modification of their filtration or digestion capacity. The results show that PER and PEN do not influence the cell growth of T. weissiflogii, but the PEN exposure causes growth inhibition of S. subspicatus for all exposure concentrations tested. This growth inhibition is enhanced for a higher concentration of PER or PEN (10,000 μg/L) in S. subspicatus. The marine diatom T. weissiflogii appears to be less impacted by plastic pollution than the green algae S. subspicatus for the exposure time. Exposure to NPs does not lead to any alteration of bivalve filtration; however, fecal and pseudo-fecal production increased after PEN exposure, suggesting the implementation of rejection mechanisms for inedible particles. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address UMR IMRCP 5623, Université Paul Sabatier, CNRS, 118, route de Narbonne, Toulouse, 31062, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09441344 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 23 March 2020; Coden: Esple; Correspondence Address: Baudrimont, M.; UMR EPOC 5805, Université de Bordeaux—CNRS, Place du Dr Peyneau, France; email: magalie.baudrimont@u-bordeaux.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 925  
Permanent link to this record
 

 
Author Roy, M.; Vasco-Palacios, A.; Geml, J.; Buyck, B.; Delgat, L.; Giachini, A.; Grebenc, T.; Harrower, E.; Kuhar, F.; Magnago, A.; Rinaldi, A.C.; Schimann, H.; Selosse, M.-A.; Sulzbacher, M.A.; Wartchow, F.; Neves, M.-A. url  doi
openurl 
  Title The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis Type Journal Article
  Year 2017 Publication New Phytologist Abbreviated Journal New Phytologist  
  Volume 214 Issue 3 Pages 920-923  
  Keywords barcoding; biodiversity; ectomycorrhizal fungi; ectomycorrhizal roots; ectomycorrhizal symbioses; fruitbodies; Neotropical ecosystems  
  Abstract  
  Address Departamento de Sistemática e Ecologia/CCEN, Laboratório de Morfo-Taxonomia Fúngica, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 23 April 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 749  
Permanent link to this record
 

 
Author Lehnebach, R.; Doumerc, L.; Clair, B.; Alméras, T. url  doi
openurl 
  Title Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Type Journal Article
  Year 2020 Publication Botany Abbreviated Journal Bot.  
  Volume 98 Issue 1 Pages 1-8  
  Keywords Bark anatomical structure; Mechanical stress; Sclereids; Secondary phloem; Tree biomechanics; Tropical species  
  Abstract Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark. Significant tensile or compressive longitudinal stresses were observed in the stems of most species. Tensile longitudinal stress was observed in various botanical families and was always associated with fibers arranged in a trellis-like structure and strong dilatation of rays. The highest tensile stress was recorded in species with gelatinous fibers forming a treillis. Compressive stress was typically associated with a large amount of sclereids in the bark, supporting the differentiation of sclereids as a potential origin of the generation of longitudinal compressive stresses in bark. In species exhibiting both a fibrous trellis structure and a significant amount of sclereids, the sign of longitudinal stress may depend on the balance between these two mechanisms.  
  Address Faculty of Bioscience Engineering, Laboratory of Wood Technology, Woodlab, Coupure Links 653, Gent, B-9000, Belgium  
  Corporate Author Thesis  
  Publisher Canadian Science Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19162804 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 20 January 2020; Correspondence Address: Lehnebach, R.; Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, 860 rue de St. Priest, France; email: lehnebach.romain@hotmail.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 913  
Permanent link to this record
 

 
Author Buckland, S.T.; Yuan, Y.; Marcon, E. pdf  url
doi  openurl
  Title Measuring temporal trends in biodiversity Type Journal Article
  Year 2017 Publication AStA Advances in Statistical Analysis Abbreviated Journal AStA Advances in Statistical Analysis  
  Volume 101 Issue 4 Pages 461-474  
  Keywords Biodiversity measures; Diversity profiles; Geometric mean; Species similarity; Turnover measures  
  Abstract In 2002, nearly 200 nations signed up to the 2010 target of the Convention for Biological Diversity, ‘to significantly reduce the rate of biodiversity loss by 2010’. To assess whether the target was met, it became necessary to quantify temporal trends in measures of diversity. This resulted in a marked shift in focus for biodiversity measurement. We explore the developments in measuring biodiversity that was prompted by the 2010 target. We consider measures based on species proportions, and also explain why a geometric mean of relative abundance estimates was preferred to such measures for assessing progress towards the target. We look at the use of diversity profiles, and consider how species similarity can be incorporated into diversity measures. We also discuss measures of turnover that can be used to quantify shifts in community composition arising, for example, from climate change. © 2017, The Author(s).  
  Address UMR EcoFoG, AgroParisTech, Campus Agronomique, BP 316, Kourou, French Guiana, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 2 November 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 769  
Permanent link to this record
 

 
Author Ezanno, P.; Aubry-Kientz, M.; Arnoux, S.; Cailly, P.; L'Ambert, G.; Toty, C.; Balenghien, T.; Tran, A. url  openurl
  Title A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France Type Journal Article
  Year 2015 Publication Preventive Veterinary Medicine Abbreviated Journal Preventive Veterinary Medicine  
  Volume 120 Issue 1 Pages 39-50  
  Keywords Mathematical modelling; Mosquito; Population dynamics; Seasonality; Sensitivity analysis; Surveillance  
  Abstract An accurate understanding and prediction of mosquito population dynamics are needed to identify areas where there is a high risk of mosquito-borne disease spread and persistence. Simulation tools are relevant for supporting decision-makers in the surveillance of vector populations, as models of vector population dynamics provide predictions of the greatest risk periods for vector abundance, which can be particularly helpful in areas with a highly variable environment. We present a generic weather-driven model of mosquito population dynamics, which was applied to one species of each of the genera Anopheles, Culex, and Aedes, located in the same area and thus affected by similar weather conditions. The predicted population dynamics of Anopheles hyrcanus, Culex pipiens, and Aedes caspius were not similar. An. hyrcanus was abundant in late summer. Cx. pipiens was less abundant but throughout the summer. The abundance of both species showed a single large peak with few variations between years. The population dynamics of Ae. caspius showed large intra- and inter-annual variations due to pulsed egg hatching. Predictions of the model were compared to longitudinal data on host-seeking adult females. Data were previously obtained using CDC-light traps baited with carbon dioxide dry ice in 2005 at two sites (. Marais du Viguerat and Tour Carbonnière) in a favourable temperate wetland of southern France (Camargue). The observed and predicted periods of maximal abundance for An. hyrcanus and Cx. pipiens tallied very well. Pearson's coefficients for these two species were over 75% for both species. The model also reproduced the major trends in the intra-annual fluctuations of Ae. caspius population dynamics, with peaks occurring in early summer and following the autumn rainfall events. Few individuals of this species were trapped so the comparison of predicted and observed dynamics was not relevant. A global sensitivity analysis of the species-specific models enabled us to identify the parameters most influencing the maximal abundance of mosquitoes. These key parameters were almost similar between species, but not with the same contributions. The emergence of adult mosquitoes was identified as a key process in the population dynamics of all of the three species considered here. Parameters associated with adult emergence therefore need to be precisely known to achieve accurate predictions. Our model is a flexible and efficient tool that predicts mosquito abundance based on local environmental factors. It is useful to and already used by a mosquito surveillance manager in France. © 2015 Elsevier B.V.  
  Address Université des Antilles et de la Guyane, UMR 'Ecologie des Forêts de Guyane'Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 18 May 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 603  
Permanent link to this record
 

 
Author Talaga, S.; Dezerald, O.; Carteron, A.; Leroy, C.; Carrias, J.-F.; Céréghino, R.; Dejean, A. url  doi
openurl 
  Title Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city Type Journal Article
  Year 2017 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems  
  Volume 20 Issue 5 Pages 1001-1009  
  Keywords Aedes aegypti; Bioindicator; Diversity; Functional traits; Tank bromeliads; Urban ecology  
  Abstract Due to habitat fragmentation, resource disruption and pollution, urbanization is one of the most destructive forms of anthropization affecting ecosystems worldwide. Generally, human-mediated perturbations dramatically alter species diversity in urban sites compared to the surroundings, thus influencing the functioning of the entire ecosystem. We investigated the taxonomic and functional diversity patterns of the aquatic macroinvertebrate communities in tank bromeliads by comparing those found in a small Neotropical city with those from an adjacent rural site. Changes in the quality of detrital inputs in relation to lower tree diversity and the presence of synanthropic species are likely important driving forces behind the observed structural changes in the urban site. Leaf-litter processors (i.e., shredders, scrapers) were positively affected in the urban site, while filter-feeders that process smaller particles produced by the activity of the shredders were negatively affected. Because we cannot ascertain whether the decline in filter-feeders is related to food web-mediated effects or to competitive exclusion (Aedes aegypti mosquitoes were present in urban bromeliads only), further studies are necessary to account for the effects of intra-guild competition or inter-guild facilitation. © 2017, Springer Science+Business Media New York.  
  Address Ecolab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 18 December 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 776  
Permanent link to this record
 

 
Author Amusant, N.; Beauchene, J.; Digeon, A.; Chaix, G. url  doi
openurl 
  Title Essential oil yield in rosewood (Aniba rosaeodora Ducke): Initial application of rapid prediction by near infrared spectroscopy based on wood spectra Type Journal Article
  Year 2016 Publication Journal of Near Infrared Spectroscopy Abbreviated Journal Journal of Near Infrared Spectroscopy  
  Volume 24 Issue 6 Pages 507-515  
  Keywords Aniba rosaeodora; Calibration; Essential oil yield; Nir; Pls; Rosewood  
  Abstract Rosewood (Aniba rosaeodora) essential oil is a valuable ingredient that has long been used in the perfume and cosmetic industries. The main rosewood timber quality parameters are its essential oil yield and quality. A hydrodistillation method has been developed for yield determination, but it is time consuming. Here we tested the applicability of near infrared (NIR) spectroscopy for determining essential oil yield directly from wood powder. Essential oil from 139 wood powders was extracted via hydrodistillation. The measurements were based on the ratio between the extracted essential oil mass and the oven-dried wood mass and were correlated with the wood powder NIR spectra. The calibration model statistical findings demonstrated that NIR could be a fast and feasible alternative method for selecting trees with a high essential oil yield potential. NIR-based predictions obtained in an independent validation set indicated a high correlation (r2e = 0.92) with laboratory essential oil yield measurements. This NIR model could help wood managers in selecting trees with a high essential oil yield potential and in developing sustainable rosewood management strategies. © IM Publications LLP 2016. All rights reserved.  
  Address ESALQ-USP, Piracicaba, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 17 January 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 707  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Herault, B.; Fine, P.V.A.; Vedel, V.; Lupoli, R.; Mesones, I.; Baraloto, C. doi  openurl
  Title Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests Type Journal Article
  Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology  
  Volume 85 Issue 1 Pages 227-239  
  Keywords Amazon; Arthropod community; Environmental filtering; Forest habitat; French Guiana; Functional composition; Mass sampling; Peru; Trophic cascades  
  Abstract Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2016 British Ecological Society.  
  Address International Center for Tropical Botany, Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 17 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 731  
Permanent link to this record
 

 
Author Lalague, H.; Csilléry, K.; Oddou-Muratorio, S.; Safrana, J.; de Quattro, C.; Fady, B.; González-Martínez, S.C.; Vendramin, G.G. url  openurl
  Title Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France Type Journal Article
  Year 2014 Publication Tree Genetics and Genomes Abbreviated Journal Tree Genetics and Genomes  
  Volume 10 Issue 1 Pages 15-26  
  Keywords Climate adaptation; Effective population size; Forest tree; Genomic diversity; Minor allele frequency (MAF); Recombination rate; Single nucleotide polymorphism (SNP)  
  Abstract European beech (Fagus sylvatica L.) is one of the most economically and ecologically important deciduous trees in Europe, yet little is known about its genomic diversity and its adaptive potential. Here, we detail the discovery and analysis of 573 single nucleotide polymorphisms (SNPs) from 58 candidate gene fragments that are potentially involved in abiotic stress response and budburst phenology using a panel of 96 individuals from southeastern France. The mean nucleotide diversity was low (θ π = 2.2 × 10-3) but extremely variable among gene fragments (range from 0.02 to 10), with genes carrying insertion/deletion mutations exhibiting significantly higher diversity. The decay of linkage disequilibrium (LD) measured at gene fragments >800 base pairs was moderate (the half distance of r 2 was 154 bp), consistent with the low average population-scaled recombination rate (ρ = 5.4 × 10-3). Overall, the population-scaled recombination rate estimated in F. sylvatica was lower than for other angiosperm tree genera (such as Quercus or Populus) and similar to conifers. As a methodological perspective, we explored the effect of minimum allele frequency (MAF) on LD and showed that higher MAF resulted in slower decay of LD. It is thus essential that the same MAF is used when comparing the decay of LD among different studies and species. Our results suggest that genome-wide association mapping can be a potentially efficient approach in F. sylvatica, which has a relatively small genome size. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address Department of Forest Ecology and Genetics, National Institute for Agriculture and Food Research and Technology (INIA), Forest Research Centre (CIFOR), 28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Cited By :1; Export Date: 13 January 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 578  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: