toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Niamké, F.B.; Amusant, N.; Kadio, A.A.; Thevenon, M.-F.; Nourissier, S.; Adima, A.A.; Jay-Allemand, C.; Chaix, G. url  openurl
  Title Rapid prediction of phenolic compounds as chemical markers for the natural durability of teak (Tectona grandis Linn f.) heartwood by near infrared spectroscopy Type Journal Article
  Year 2014 Publication Journal of Near Infrared Spectroscopy Abbreviated Journal J. Near Infrared Spectrosc.  
  Volume 22 Issue 1 Pages 35-43  
  Keywords Heartwood; Hplc; Natural durability; NIR spectroscopy; Phenolic; Prediction; Quinone; Tectona grandis  
  Abstract Near infrared (NIR) spectroscopy provides rapid and non-destructive analysis of wood properties and composition. In this study, we aimed to use NIR measurement for the prediction of teak phenolic compounds, which are chemical markers for natural durability of wood. Twenty-seven teak trees from two geographical zones (Malaysia and Ivory Coast) were used. On ground heartwood samples, the content of total phenolics and individual quinones (tectoquinone, 2-(hydroxymethyl)anthraquinone, 2-anthraquinone carboxylic acid, 1,4-naphthoquinoneand 4c,5c-dihydroxy-epiisocatalponol) were determined using high performance liquid chromatography (HPLC). Partial least squares (PLS) regression with NIR spectra on the same samples and phenolic data was used to build NIR models for phenolic contents. The PLS models for the total predicted phenolics and three quinone contents (tectoquinone, 2-(hydroxymethyl) anthraquinone, and 4¢,5¢-dihydroxy-epiisocatalponol) showed a good ratio of performance to deviation (RPD ≥ 2.5), strong coefficients of determination (r2 ≥ 0.8) and the prediction errors were consistent with the reference method. These results demonstrate that NIR spectroscopy can be reliable for the evaluation of total phenolics and individual quinones in teak heartwood wood meal. NIR spectroscopy is a promising technique for rapidly providing information on the quinone contents in teak wood and indirectly for knowing its natural durability. This finding leads to a precise, non-destructive tool for teak wood quality evaluation. © IM Publications LLP 2014.  
  Address CIRAD-UMR AGAP, Department of Forest Science, ESALQ / University of São Paulo, Avenue Pàdua Dias 11, CEP 13418-900, Piracicaba-SP, Brazil  
  Corporate Author Thesis  
  Publisher N I R Publications Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17516552 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 20 May 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: Niamké, F.B.; LAPISEN, Groupe de Recherche en Chimie des Eaux et des Substances Naturelles, Institut National Polytechnique Houphouët Boigny, BP 1313, Yamoussoukro, Cote d'Ivoire Approved no  
  Call Number EcoFoG @ webmaster @ Serial 542  
Permanent link to this record
 

 
Author Brémaud, I.; El Kaïm, Y.; Guibal, D.; Minato, K.; Thibaut, B.; Gril, J. url  openurl
  Title Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types Type Journal Article
  Year 2012 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 69 Issue 3 Pages 373-386  
  Keywords Damping coefficient; Dynamic mechanical properties; Specific dynamic modulus of elasticity; Specific gravity; Viscoelastic vibrational properties; Wood diversity  
  Abstract · Context Increased knowledge on diversity in wood properties would have implications both for fundamental research and for promoting a diversification of uses as material. · Aims The objective is to contribute to overcoming the critical lack of data on the diversity of wood dynamic mechanical/viscoelastic vibrational properties by testing lesser known species and categorising sources of variability. · Methods Air-dry axial specific dynamic modulus of elasticity (E′/γ) and damping coefficient (tand) were measured on a wide sampling (1,792 specimens) of 98 wood types from 79 species. An experimental device and protocol was designed for conducting systematic (i.e. rapid and reproducible) characterisations. · Results Diversity at the specimens' level corroborates the “standard” relationship between tanδ and E'/γ, which is discussed in terms of orientation of wood elements and of chemical composition. Diversity at the species level is expressed on the basis of results for normal heartwood, with specific gravity (γ) ranging from 0.2 to 1.3. Axial E'/γ ranges from 9 to 32 GPa and tand from 4×10 -3 to 19×10 -3. Properties distribution follows a continuum, but with group characteristics. The lowest values of tanδ are only found in certain tropical hardwoods. Results can also suggest alternative species for musical instruments making. · Conclusion The variations in specific gravity, in stiffness or in “viscosity” appear to be predominantly linked to different levels of diversity: between species or between wood types (reaction wood or taxonomy-related differences in heartwood extractives). © INRA/Springer-Verlag France 2011.  
  Address Wood Laboratory, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 20 June 2012; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-011-0166-z; Language of Original Document: English; Correspondence Address: Brémaud, I.; Wood Laboratory, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland; email: iris_bremaud@hotmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 403  
Permanent link to this record
 

 
Author McLean, J.P.; Arnould, O.; Beauchene, J.; Clair, B. url  openurl
  Title The effect of the G-layer on the viscoelastic properties of tropical hardwoods Type Journal Article
  Year 2012 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 69 Issue 3 Pages 399-408  
  Keywords Dma; G-layer; Reaction wood; Tropical wood; Viscoelasticity  
  Abstract · Context and aim This study aimed to examine the effect of the tension wood G-layer on the viscoelastic properties of wood. · Methods Tension wood and opposite wood samples were obtained from six French Guianese tropical rainforest species (Sextonia rubra, Ocotea guyanensis, Inga alba, Tachigali melinoni, Iyranthera sagotiana and Virola michelii); the tension wood of the former three of these species had a Glayer, whilst the tension wood from the latter three had no Glayer. Tensile dynamic mechanical analysis (DMA) was performed on green never dried wood samples in the longitudinal direction with samples submerged in a water bath at a temperature (30°C) and frequency (1 Hz) representative of the conditions experienced by wood within a living tree. Then, DMA was repeated with samples conditioned to an air-dried state. Finally, samples were oven-dried to measure longitudinal shrinkage. · Results Tension wood did not always have a higher longitudinal storage (elastic) modulus than opposite wood from the same tree regardless of the presence or absence of a G-layer. For the species containing a G-layer, tension wood had a higher damping coefficient and experienced a greater longitudinal shrinkage upon drying than opposite wood from the same species. No difference was found in damping coefficients between tension wood and opposite wood for the species that had no G-layer. · Conclusion It is proposed that the different molecular composition of the G-layer matrix has an influence on the viscoelasticity of wood, even if a biomechanical gain is not yet clear. This study shows that rheological properties and longitudinal shrinkage can be used to detect the presence of a G-layer in tension wood. © INRA/Springer-Verlag France 2011.  
  Address UMR Ecologie des Forêts de Guyane (ECOFOG), CIRAD, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 20 June 2012; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-011-0164-1; Language of Original Document: English; Correspondence Address: McLean, J.P.; Forest Products Research Institute, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom; email: p.mclean@napier.ac.uk Approved no  
  Call Number EcoFoG @ webmaster @ Serial 404  
Permanent link to this record
 

 
Author Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Arroyo, L.; Aymard, G.A.; Bánki, O.S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R.G.A.; Camargo, J.L.C.; Castilho, C.V.; Chama, V.; Chao, K.J.; Chave, J.; Comiskey, J.A.; Valverde, F.C.; da Costa, L.; de Oliveira, E.A.; Di Fiore, A.; Erwin, T.L.; Fauset, S.; Forsthofer, M.; Galbraith, D.R.; Grahame, E.S.; Groot, N.; Herault, B.; Higuchi, N.; Honorio Coronado, E.N.; Keeling, H.; Killeen, T.J.; Laurance, W.F.; Laurance, S.; Licona, J.; Magnusson, W.E.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza, C.; Neill, D.A.; Nogueira, E.M.; Núñez, P.; Pallqui Camacho, N.C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Peña-Claros, M.; Pickavance, G.C.; Pitman, N.C.A.; Poorter, L.; Prieto, A.; Quesada, C.A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomão, R.P.; Schwarz, M.; Silva, N.; Silva-Espejo, J.E.; Silveira, M.; Stropp, J.; Talbot, J.; ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, R.; van der Heijden, G.M.F.; van der Hout, P.; Guimarães Vieira, I.C.; Vieira, S.A.; Vilanova, E.; Vos, V.A.; Zagt, R.J.; Alarcon, A.; Amaral, I.; Camargo, P.B.; Brown, I.F.; Blanc, L.; Burban, B.; Cardozo, N.; Engel, J.; de Freitas, M.A.; de Oliveira, A.; Fredericksen, T.S.; Ferreira, L.; Hinojosa, N.T.; Jimenez, E.; Lenza, E.; Mendoza, C.; Mendoza Polo, I.; Peña Cruz, A.; Peñuela, M.C.; Petronelli, P.; Singh, J.; Maquirino, P.; Serano, J.; Sota, A.; Oliveira dos Santos, C.; Ybarnegaray, J.; Ricardo, J. pdf  url
doi  openurl
  Title Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions Type Journal Article
  Year 2017 Publication Carbon Balance and Management Abbreviated Journal Carbon Balance and Management  
  Volume 12 Issue 1 Pages  
  Keywords Amazonia; Carbon balance; Carbon sink; Climate change; Ecosystem service; Land use change; Sequestration; Tropical forests  
  Abstract Background: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. Results: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Conclusions: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities. © 2017 The Author(s).  
  Address University of Leeds, School of Geography, Leeds, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 20 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 735  
Permanent link to this record
 

 
Author Touchard, A.; Aili, S.R.; Téné, N.; Barassé, V.; Klopp, C.; Dejean, A.; Kini, R.M.; Mrinalini; Coquet, L.; Jouenne, T.; Lefranc, B.; Leprince, J.; Escoubas, P.; Nicholson, G.M.; Treilhou, M.; Bonnafé, E. url  doi
openurl 
  Title Venom Peptide Repertoire of the European Myrmicine Ant Manica rubida: Identification of Insecticidal Toxins Type Journal Article
  Year 2020 Publication Journal of proteome research Abbreviated Journal J. Proteome Res.  
  Volume 19 Issue 4 Pages 1800-1811  
  Keywords glycosylated toxin; peptidome; polycationic α-helix; predation; pyroglutamate; reversible neurotoxicity  
  Abstract Using an integrated transcriptomic and proteomic approach, we characterized the venom peptidome of the European red ant, Manica rubida. We identified 13 “myrmicitoxins” that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by O-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly Lucilia caesar, permitting us to identify six myrmicitoxins (i.e., U3-, U10-, U13-, U20-MYRTX-Mri1a, U10-MYRTX-Mri1b, and U10-MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized U10-MYRTX-Mri1a, -Mri1b, -Mri1c, and U20-MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30-125 nmol·g-1). U13-MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g-1). Finally, U3-MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g-1. Thus, M. rubida employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.  
  Address VenomeTech, 473 Route des Dolines – Villa 3, Valbonne, 06560, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 15353907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 20 April 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 927  
Permanent link to this record
 

 
Author Morel, H.; Lehnebach, R.; Cigna, J.; Ruelle, J.; Nicolini, É.; Beauchene, J. pdf  url
doi  openurl
  Title Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree Type Journal Article
  Year 2018 Publication Bois et Forets des Tropiques Abbreviated Journal  
  Volume 335 Issue Pages 59-69  
  Keywords Curvilinear pattern; French Guiana; Intra-tree; Tropical species  
  Abstract Investigations of basic radial wood density (WD) in tropical trees revealed linear patterns and some curvilinear patterns. Studies usually disregard longitudinal variations, which are often considered to be similar to radial variations. This study aimed to show (1) a new radial curvilinear WD pattern, (2) differences in amplitude between radial and longitudinal gradients and (3) to partition WD variations according to different scales in Parkia velutina, an emergent tree found in Neotropical rain forests. We collected full discs from six felled trees and radial cores from 10 standing trees to check WD variability, plus one dominant axis per tree for analysis of height growth rates. This species showed very high growth rates indicative of heliophilic habits. WD varied from 0.194 to 0.642 g/cm3. Such amplitude is rarely observed within the same tree. Radial variation in WD was curvilinear, with an amplitude generally less than the longitudinal amplitude. Consequently, in mature trees, WD values in the crown were higher than those in the outer trunk. WD variations can be highly significant at different scales. The variance partitioning also revealed that the whole WD range of Parkia velutina is more accurately estimated intra-individually when both longitudinal and radial gradient are covered.  
  Address INRA, LERFoB, AgroParisTech, Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 20 April 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 799  
Permanent link to this record
 

 
Author Hartke, J.; Sprenger, P.P.; Sahm, J.; Winterberg, H.; Orivel, J.; Baur, H.; Beuerle, T.; Schmitt, T.; Feldmeyer, B.; Menzel, F. pdf  url
doi  openurl
  Title Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal  
  Volume 9 Issue 16 Pages 9160-9176  
  Keywords environmental association; integrative taxonomy; niche differentiation; population structure; sexual selection; speciation  
  Abstract Upon advances in sequencing techniques, more and more morphologically identical organisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.  
  Address Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 2 September 2019; Correspondence Address: Hartke, J.; Senckenberg Biodiversity and Climate Research CentreGermany; email: Juliane.Hartke@senckenberg.de; Funding details: Leibniz-Gemeinschaft; Funding details: Agence Nationale de la Recherche, Not Available; Funding details: Deutsche Forschungsgemeinschaft, DFG, ME 3842/5‐1; Funding text 1: We thank Philippe Cerdan and Aurelie Dourdain for research permissions in the Hydreco Lab Petit Saut and the Paracou Research Station, respectively. Similarly, we thank Patrick Châtelet, Philippe Gaucher, and Dorothée Deslignes for permission to sample in the Les Nouragues Reserve. Further on, we thank Heike Stypa for supporting us in preparing the chemical samples. We thank Aidin Niamir for his helpful advice regarding climate data analysis. Financial support for this study was provided by the German Science Foundation (DFG) as a grant to Barbara Feldmeyer (FE 1333/7‐1), Thomas Schmitt (SCHM 2645/7‐1), and Florian Menzel (ME 3842/5‐1) and a grant managed by the French Agence Nationale de la Recherche (CEBA, ref. ANR‐10‐LABX‐25‐01) to Jérôme Orivel. The publication of this article was funded by the Open Access Fund of the Leibniz Association. Finally, we thank Markus Pfenninger and two anonymous reviewers for providing helpful comments on an earlier version of this manuscript.; References: Adler, P.B., HilleRisLambers, J., Levine, J.M., A niche for neutrality (2007) Ecology Letters, 10, pp. 95-104. , https://doi.org/10.1111/j.1461-0248.2006.00996.x; Aitchison, J., The statistical analysis of compositional data (1982) Journal of the Royal Statistical Society: Series B (Methodological), 44, pp. 139-177. , https://doi.org/10.1111/j.2517-6161.1982.tb01195.x; Andersson, M., Sexual selection, natural selection and quality advertisement (1982) Biological Journal of the Linnean Society, 17, pp. 375-393. , https://doi.org/10.1111/j.1095-8312.1982.tb02028.x; Bartlett, J.W., Frost, C., Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables (2008) Ultrasound in Obstetrics and Gynecology, 31, pp. 466-475. , https://doi.org/10.1002/uog.5256; Baur, H., Kranz-Baltensperger, Y., Cruaud, A., Rasplus, J.Y., Timokhov, A.V., Gokhman, V.E., Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae) – An integrative approach (2014) Systematic Entomology, 39, pp. 691-709; Baur, H., Leuenberger, C., Analysis of ratios in multivariate morphometry (2011) Systematic Biology, 60, pp. 813-825. , https://doi.org/10.1093/sysbio/syr061; Bell, G., The distribution of abundance in neutral communities (2017) The American Naturalist, 155, p. 606. , https://doi.org/10.2307/3078983; Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Das, I., Cryptic species as a window on diversity and conservation (2007) Trends in Ecology & Evolution, 22, pp. 148-155. , https://doi.org/10.1016/j.tree.2006.11.004; Blomberg, S.P., Garland, T., Ives, A.R., Testing for phylogenetic signal in comparative data: Behavioral traits are more labile (2003) Evolution, 57, pp. 717-745; Blomquist, G.J., Structure and analysis of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 19-34. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Blomquist, G.J., Bagnères, A.-G., Introduction: History and overview of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 3-18. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Bolaños, L.M., Rosenblueth, M., Manrique de Lara, A., Migueles-Lozano, A., Gil-Aguillón, C., Mateo-Estrada, V., Martínez-Romero, E., Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts (2019) PLoS ONE, 14. , https://doi.org/10.1371/journal.pone.0209588; Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Drummond, A.J., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis (2014) PLoS Computational Biology, 10. , https://doi.org/10.1371/journal.pcbi.1003537; Boyle, J.H., Martins, D., Musili, P.M., Pierce, N.E., Population genomics and demographic sampling of the ant-plant Vachellia drepanolobium and its symbiotic ants from sites across its range in East Africa (2018) Frontiers in Ecology and Evolution, 7, p. 206. , https://doi.org/10.3389/fevo.2019.00206; Brückner, A., Heethoff, M., A chemo-ecologists' practical guide to compositional data analysis (2017) Chemoecology, 27, pp. 33-46. , https://doi.org/10.1007/s00049-016-0227-8; Carlson, D.A., Bernier, U.R., Sutton, B.D., Elution patterns from capillary GC for methyl-branched alkanes (1998) Journal of Chemical Ecology, 24, pp. 1845-1865; Chomicki, G., Ward, P.S., Renner, S.S., Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics (2015) Proceedings of the Royal Society B: Biological Sciences, 282, p. 20152200; Chung, H., Carroll, S.B., Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating (2015) BioEssays, 37, pp. 822-830. , https://doi.org/10.1002/bies.201500014; Chung, H., Loehlin, D.W., Dufour, H.D., Vaccaro, K., Millar, J.G., Carroll, S.B., A single gene affects both ecological divergence and mate choice in Drosophila (2014) Science, 343 (6175), pp. 1148-1151; Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L., Couloux, A., Savolainen, V., An extreme case of plant – insect codiversification: Figs and fig-pollinating wasps (2012) Systematic Biology, 61, pp. 1029-1047. , https://doi.org/10.1093/sysbio/sys068; Csösz, S., Wagner, H.C., Bozsó, M., Seifert, B., Arthofer, W., Schlick-Steiner, B.C., Pénzes, Z., Tetramorium indocile Santschi, 1927 stat. rev. is the proposed scientific name for Tetramorium sp. C sensu Schlick-Steiner et al. (2006) based on combined molecular and morphological evidence (Hymenoptera: Formicidae) (2014) Zoologischer Anzeiger, 253, pp. 469-481; Darwell, C.T., Cook, J.M., Cryptic diversity in a fig wasp community — morphologically differentiated species are sympatric but cryptic species are parapatric (2017) Molecular Ecology, 26, pp. 937-950. , https://doi.org/10.1111/mec.13985; Davidson, D.W., Ecological studies of Neotropical ant gardens (1988) Ecology, 69, pp. 1138-1152. , https://doi.org/10.2307/1941268; De Queiroz, K., Species concepts and species delimitation (2007) Systematic Biology, 56, pp. 879-886. , https://doi.org/10.1080/10635150701701083; de Vienne, D.M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M.E., Giraud, T., Cospeciation vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution (2013) New Phytologist, 198, pp. 347-385. , https://doi.org/10.1111/nph.12150; Degnan, P.H., Lazarus, A.B., Brock, C.D., Wernegreen, J.J., Host – symbiont stability and fast evolutionary rates in an ant – Bacterium Association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia (2004) Systematic Biology, 53, pp. 95-110. , https://doi.org/10.1080/10635150490264842; Dieckmann, U., Doebeli, M., On the origin of species by sympatric speciation (1999) Nature, 400, pp. 354-357. , https://doi.org/10.1038/22521; Doebeli, M., Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions (2000) The American Naturalist, 156, pp. S77-S101. , https://doi.org/10.1086/303417; Emery, V.J., Tsutsui, N.D., Recognition in a social symbiosis: Chemical phenotypes and nestmate recognition behaviors of Neotropical parabiotic ants (2013) PLoS ONE, 8. , https://doi.org/10.1371/journal.pone.0056492; Excoffier, L., Lischer, H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows (2010) Molecular Ecology Resources, 10, pp. 564-567; García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction (2015) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 680-685. , https://doi.org/10.1073/pnas.1507681113; Gause, G.F., Experimental studies on the struggle for existence I. Mixed population of two species of yeast (1932) Journal of Experimental Biology, 9, pp. 389-402; Gebiola, M., Monti, M.M., Johnson, R.C., Woolley, J.B., Hunter, M.S., Giorgini, M., Pedata, P.A., A revision of the Encarsia pergandiella species complex (Hymenoptera: Aphelinidae) shows cryptic diversity in parasitoids of whitefly pests (2017) Systematic Entomology, 42, pp. 31-59; Grundt, H.H., Kjølner, S., Borgen, L., Rieseberg, L.H., Brochmann, C., High biological species diversity in the arctic flora (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 972-975. , https://doi.org/10.1073/pnas.0510270103; Guimarães, P.R., Jordano, P., Thompson, J.N., Evolution and coevolution in mutualistic networks (2011) Ecology Letters, 14, pp. 877-885. , https://doi.org/10.1111/j.1461-0248.2011.01649.x; Gustafson, K.D., Kensinger, B.J., Bolek, M.G., Luttbeg, B., Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions (2014) Evolutionary Ecology Research, 16, pp. 77-89; Han, M.V., Zmasek, C.M., PhyloXML: XML for evolutionary biology and comparative genomics (2009) BMC Bioinformatics, 10, p. 356. , https://doi.org/10.1186/1471-2105-10-356; Hardin, G., The competitive exclusion principle (1960) Science, 131, pp. 1292-1297; Heethoff, M., Laumann, M., Weigmann, G., Raspotnig, G., Integrative taxonomy: Combining chemical, morphological and molecular data for delineation of the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae) (2011) Frontiers in Zoology, 8, p. 2; Hoeksema, J.D., Bruna, E.M., Pursuing the big questions about interspecific mutualism: A review of theoretical approaches (2000) Oecologia, 125, pp. 321-330. , https://doi.org/10.1007/s004420000496; Hoffmann, A.A., Turelli, M., Simmons, G.M., Unidirectional incompatibility between populations of Drosophila simulans (1986) Evolution, 40, pp. 692-701; Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., Fukatsu, T., Strict Host-Symbiont cospeciation and reductive genome evolution in insect gut bacteria (2006) PLoS Biology, 4. , https://doi.org/10.1371/journal.pbio.0040337; Hubbell, S.P., (2001) The unified neutral theory of biodiversity and biogeography, , Princeton, NJ, Princeton University Press; Hubbell, S.P., Neutral theory in community ecology and the hypothesis of functional equivalence (2005) Functional Ecology, 19, pp. 166-172. , https://doi.org/10.1111/j.0269-8463.2005.00965.x; Hudson, E.J., Price, T.D., Pervasive reinforcement and the role of sexual selection in biological speciation (2014) Journal of Heredity, 105, pp. 821-833. , https://doi.org/10.1093/jhered/esu041; Janz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the Tribe Nymohalini (2001) Evolution, 55, pp. 783-796; Jousselin, E., van Noort, S., Berry, V., Rasplus, J.-Y., Rønsted, N., Erasmus, J.C., Greeff, J.M., One fig to bind them all: Host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps (2008) Evolution, 62, pp. 1777-1797. , https://doi.org/10.1111/j.1558-5646.2008.00406.x; Kamilar, J.M., Cooper, N., Phylogenetic singal in primate behaviour, ecolog anf life history (2013) Philosophical Transactions of the Royal Society of London. Series B, 368, p. 20120341; Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Kessler, M., Climatologies at high resolution for the earth's land surface areas (2017) Scientific Data, 4, p. 170122. , https://doi.org/10.1038/sdata.2017.122; Kawakita, A., Takimura, A., Terachi, T., Sota, T., Kato, M., Cospeciation analysis of an obligate pollination mutualism: Have Glochidon trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillaridae) diverified in parallel? (2004) Evolution, 58, pp. 2201-2214; Klingenberg, C.P., Size, shape, and form: Concepts of allometry in geometric morphometrics (2016) Development Genes and Evolution, 226, pp. 113-137. , https://doi.org/10.1007/s00427-016-0539-2; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms (2018) Molecular Biology and Evolution, 35, pp. 1547-1549. , https://doi.org/10.1093/molbev/msy096; Leavitt, D.H., Starrett, J., Westphal, M.F., Hedin, M., Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae) (2015) Molecular Phylogenetics and Evolution, 91, pp. 56-67. , https://doi.org/10.1016/j.ympev.2015.05.016; Leigh, J.W., Bryant, D., POPART: Full-feature software for haplotype network construction (2015) Methods in Ecology and Evolution, 6, pp. 1110-1116; Liaw, A., Wiener, M., Classification and regression by randomForest (2002) R News, 2, pp. 18-22; Martin, S.J., Helanterä, H., Drijfhout, F.P., Evolution of species-specific cuticular hydrocarbon patterns in Formica ants (2008) Biological Journal of the Linnean Society, 95, pp. 131-140. , https://doi.org/10.1111/j.1095-8312.2008.01038.x; Menzel, F., Blaimer, B.B., Schmitt, T., How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait (2017) Proceedings of the Royal Society B-Biological Sciences, 284, p. 20161727. , https://doi.org/10.1098/rspb.2016.1727; Menzel, F., Linsenmair, K.E., Blüthgen, N., Selective interspecific tolerance in tropical Crematogaster-Camponotus associations (2008) Animal Behavior, 75, pp. 837-846. , https://doi.org/10.1016/j.anbehav.2007.07.005; Menzel, F., Orivel, J., Kaltenpoth, M., Schmitt, T., What makes you a potential partner? Insights from convergently evolved ant-ant symbioses (2014) Chemoecology, 24, pp. 105-119. , https://doi.org/10.1007/s00049-014-0149-2; Menzel, F., Schmitt, T., Blaimer, B.B., The evolution of a complex trait: Cuticular hydrocarbons in ants evolve independent from phylogenetic constraints (2017) Journal of Evolutionary Biology, 30, pp. 1372-1385. , https://doi.org/10.1111/jeb.13115; Montero-Pau, J., Gomez, A., Muñoz, J., Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs (2008) Limnology and Oceanography: Methods, 6, pp. 218-222. , https://doi.org/10.4319/lom.2008.6.218; Nosil, P., (2012) Ecological speciation, , Oxford, UK, Oxford University Press; Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Wagner, H., (2016) vegan: Community Ecology Package, , https://cran.r-project.org/web/packages/vegan/; Orivel, J., Errard, C., Dejean, A., Ant gardens: Interspecific recognition in parabiotic ant species (1997) Behavioral Ecology and Sociobiology, 40, pp. 87-93. , https://doi.org/10.1007/s002650050319; Paradis, E., Pegas: An R package for population genetics with an integrated-modular approach (2010) Bioinformatics, 26, pp. 419-420. , https://doi.org/10.1093/bioinformatics/btp696; Quek, S.-P., Davies, S.J., Itino, T., Pierce, N.E., Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) Inhabitants of Macaranga (Euphorbiaceae) (2004) Evolution, 58, pp. 554-570; (2018) R: A language and environment for statistical computing, , Vienna, Austria, R Foundation for Statistical Computing; Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., Posterior summarization in Bayesian Phylogenetics using Tracer 1.7 (2018) Systematic Biology, 67, pp. 901-904. , https://doi.org/10.1093/sysbio/syy032; Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Huelsenbeck, J.P., MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space (2012) Systematic Biology, 61, pp. 539-542; Schlenke, T.A., Begun, D.J., Strong selective sweep associated with a transposon insertion in Drosophila simulans (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 1626-1631. , https://doi.org/10.1073/pnas.0303793101; Schuler, H., Köppler, K., Daxböck-Horvath, S., Rasool, B., Krumböck, S., Schwarz, D., Riegler, M., The hitchhiker's guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi (2016) Molecular Ecology, 25, pp. 1595-1609; Schultz, T.R., Solomon, S.A., Mueller, U.G., Villesen, P., Boomsma, J.J., Adams, R.M.M., Norden, B., Cryptic speciation in the fungus-growing ants Cyphomyrmex longiscapus Weber and Cyphomyrmex muelleri Schultz and Solomon, new species (Formicidae, Attini) (2002) Insectes Sociaux, 49, pp. 331-343. , https://doi.org/10.1007/PL00012657; Schwander, T., Arbuthnott, D., Gries, R., Gries, G., Nosil, P., Crespi, B.J., Hydrocarbon divergence and reproductive isolation in Timema stick insects (2013) BMC Evolutionary Biology, 13, p. 151. , https://doi.org/10.1186/1471-2148-13-151; Scriven, J.J., Whitehorn, P.R., Goulson, D., Tinsley, M.C., Niche partitioning in a sympatric cryptic species complex (2016) Ecology and Evolution, 6, pp. 1328-1339. , https://doi.org/10.1002/ece3.1965; Seifert, B., Removal of allometric variance improves species separation in multi-character discriminant functions when species are strongly allometric and exposes diagnostic characters (2008) Myrmecological News, 11, pp. 91-105; Servedio, M.R., Van Doorn, G.S., Kopp, M., Frame, A.M., Nosil, P., Magic traits in speciation: “magic” but not rare? (2011) Trends in Ecology & Evolution, 26, pp. 389-397; Smadja, C., Butlin, R.K., On the scent of speciation: The chemosensory system and its role in premating isolation (2009) Heredity, 102, pp. 77-97. , https://doi.org/10.1038/hdy.2008.55; Steiner, F.M., Csöcs, S., Markó, B., Gamisch, A., Rinnhofer, L., Folterbauer, C., Schlick-Steiner, B.C., Molecular phylogenetics and evolution turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor “structor” (2018) Molecular Phylogenetics and Evolution, 127, pp. 387-404. , https://doi.org/10.1016/j.ympev.2018.04.005; Stork, N.E., How many species of insects and other terrestrial arthropods are there on earth? (2018) Annual Review of Ecology Evolution and Systematics, 63, pp. 31-45; Ströher, P.R., Li, C., Pie, M.R., Exon-primed intron-crossing (EPIC) markers as a tool for ant phylogeography (2013) Revista Brasileira de Entomologia, 57, pp. 427-430. , https://doi.org/10.1590/S0085-56262013005000039; Struck, T.H., Feder, J.L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V.I., Dimitrov, D., Finding evolutionary processes hidden in cryptic species (2018) Trends in Ecology & Evolution, 33, pp. 153-163. , https://doi.org/10.1016/j.tree.2017.11.007; Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 123, pp. 585-595; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10, pp. 512-526; Thibert-Plante, X., Gavrilets, S., Evolution of mate choice and the so-called magic traits in ecological speciation (2013) Ecology Letters, 16, pp. 1004-1013. , https://doi.org/10.1111/ele.12131; Thomas, M.L., Simmons, L.W., Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae) (2008) Journal of Insect Physiology, 54, pp. 1081-1089. , https://doi.org/10.1016/j.jinsphys.2008.04.012; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22, pp. 4673-4680. , https://doi.org/10.1093/nar/22.22.4673; Thompson, J.N., Schwind, C., Guimarães, P.R., Friberg, M., Diversification through multitrait evolution in a coevolving interaction (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 11487-11492. , https://doi.org/10.1073/pnas.1307451110; Türke, M., Fiala, B., Linsenmair, K.E., Feldhaar, H., Estimation of dispersal distances of the obligately plant-associated ant Crematogaster decamera (2010) Ecological Entomology, 35, pp. 662-671. , https://doi.org/10.1111/j.1365-2311.2010.01222.x; van Wilgenburg, E., Symonds, M.R.E., Elgar, M.A., Evolution of cuticular hydrocarbon diversity in ants (2011) Journal of Evolutionary Biology, 24, pp. 1188-1198. , https://doi.org/10.1111/j.1420-9101.2011.02248.x; van Zweden, J.S., d'Ettorre, P., Nestmate recognition in social insects and the role of hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 222-243. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Vantaux, A., Dejean, A., Dor, A., Orivel, J., Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior (2007) Insectes Sociaux, 54, pp. 95-99. , https://doi.org/10.1007/s00040-007-0914-0; Violle, C., Nemergut, D.R., Pu, Z., Jiang, L., Phylogenetic limiting similarity and competitive exclusion (2011) Ecology Letters, 14, pp. 782-787. , https://doi.org/10.1111/j.1461-0248.2011.01644.x; Vodă, R., Dapporto, L., Dincă, V., Vila, R., Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0117802; Wickham, H., (2016) ggplot2: Elegant graphics for data analysis, , 2nd ed., New York, NY, Springer-Verlag; Wolak, M.E., Fairbairn, D.J., Paulsen, Y.R., Guidelines for estimating repeatability (2012) Methods in Ecology and Evolution, 3, pp. 129-137. , https://doi.org/10.1111/j.2041-210X.2011.00125.x Approved no  
  Call Number EcoFoG @ webmaster @ Serial 881  
Permanent link to this record
 

 
Author Lambs, L.; Bompy, F.; Dulormne, M. url  doi
openurl 
  Title Using an “isotopic spike” from a tropical storm to understand water exchange on a large scale: Case study of Hurricane Rafael in the lesser antilles archipelago, October 2012 Type Journal Article
  Year 2018 Publication Rapid Communications in Mass Spectrometry Abbreviated Journal  
  Volume 32 Issue 6 Pages 457-468  
  Keywords  
  Abstract Rationale: Studies of wetland eco-hydrology in tropical coastal areas are scarce, and the use of water stable isotopes can be of great help. Key constraints for their analysis are (i) the small difference in delta18O values between seawater and old evaporated freshwater, and (ii) the fact that the presence of old brackish water limits the determination of the water origin and dynamic. Methods: The water from tropical storms displays distinctively depleted heavy stable isotopes, in comparison with usual tropical rainfall without strong convective thunderstorms. During tropical storms, such as Hurricane Rafael in mid-October 2012, the rainfall delta18O signal can be decreased by many units. This effect is called an “isotopic spike”, and it could be used as a temporal marker of the water fluxes. Results: Water samples, with delta18O values as low as −8.9/1000, were collected on the islands of Guadeloupe and Saint-Martin during Hurricane Rafael, whereas the usual range of groundwater or mean rainfall delta18O values is around −2.8 +/- 0.5 /1000, as measured from 2009 to 2012. These water “isotopic spikes” allow us to show a surface freshwater uptake by mangrove trees in Guadeloupe, and in Saint-Martin, to calculate the water renewal of the salt ponds and pools. Conclusions: The “isotopic spikes” generated by tropical storms are generally used to track back past storm events, as recorded in trees and stalagmites. Here, the propagation of isotopic spike is followed to improve the understanding of the freshwater circulation and the water dynamic within coastal ecosystems influenced by seawater.  
  Address UMR ECOFOG, Université des Antilles, Guadeloupe, Pointe-à-Pitre, 97159, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 2 September 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 818  
Permanent link to this record
 

 
Author Torroba-Balmori, P.; Budde, K.B.; Heer, K.; González-Martínez, S.C.; Olsson, S.; Scotti-Saintagne, C.; Casalis, M.; Sonké, B.; Dick, C.W.; Heuertz, M. url  doi
openurl 
  Title Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species Type Journal Article
  Year 2017 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 12 Issue 8 Pages e0182515  
  Keywords  
  Abstract The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations. © 2017 Torroba-Balmori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.  
  Address Smithsonian Tropical Research Institute, Panama  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 2 September 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 762  
Permanent link to this record
 

 
Author Ghislain, B.; Clair, B. pdf  url
doi  openurl
  Title Diversity in the organisation and lignification of tension wood fibre walls – A review Type Journal Article
  Year 2017 Publication IAWA Journal Abbreviated Journal  
  Volume 38 Issue 2 Pages 245-265  
  Keywords diversity; fibres; G-layer; lignification; multilayered tension wood fibre walls; S1 + S2 + S3 + G; Tension wood  
  Abstract Tension wood, a tissue developed by angiosperm trees to actively recover their verticality, has long been defined by the presence of an unlignified cellulosic inner layer in the cell wall of fibres, called the G-layer. Although it was known that some species have no G-layer, the definition was appropriate since it enabled easy detection of tension wood zones using various staining techniques for either cellulose or lignin. For several years now, irrespective of its anatomical structure, tension wood has been defined by its high mechanical internal tensile stress. This definition enables screening of the diversity of cell walls in tension wood fibres. Recent results obtained in tropical species with tension wood with a delay in the lignification of the G-layer opened our eyes to the effective presence of large amounts of lignin in the G-layer of some species. This led us to review older literature mentioning the presence of lignin deposits in the G-layer and give them credit. Advances in the knowledge of tension wood fibres allow us to reconsider some previous classifications of the diversity in the organisation of the fibre walls of the tension wood. © 2017 International Association of Wood Anatomists.  
  Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 2 September 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 763  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: