toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alméras, T.; Gronvold, A.; van der Lee, A.; Clair, B.; Montero, C. url  doi
openurl 
  Title Contribution of cellulose to the moisture-dependent elastic behaviour of wood Type Journal Article
  Year 2017 Publication Composites Science and Technology Abbreviated Journal Composites Science and Technology  
  Volume 138 Issue Pages 151-160  
  Keywords Cellulose; Crystal strain; Micromechanics; Wood; X-ray diffraction  
  Abstract Wood has a hierarchical structure involving several levels of organisation. The stiffness of wood relies on its capacity to transfer mechanical stress to its stiffest element at the lowest scale, namely crystalline cellulose. This study aims at quantifying to what extend crystalline cellulose contributes to wood stiffness depending on its moisture content. The crystal strains of cellulose were measured using X-ray diffraction on wet and dry specimens of spruce, based on a previously published methodology. The comparison between crystal strain and macroscopic strain shows that, during elastic loading, cellulose strain is lower than macroscopic strain. The means ratio of crystal/macroscopic strain amounts 0.85 for dry specimens and 0.64 for wet specimens. This strain ratio cannot be explained just by the projection effect due to the difference in orientation between cellulose microfibrils and cell wall, but results from deformation mechanisms in series with cellulose. Analysis shows that this series contribution represents a non-negligible contribution to wood compliance and is strongly moisture-dependent. This contribution amounts 9% for dry specimens and 33% for wet specimens, corresponding to a 4-fold increase in compliance for the series contribution. The origin of these strains is ascribed to mechanisms involving bending or shear strain at different scales, due to the fact that reinforcing element are neither perfectly straight nor infinitely long. © 2016  
  Address CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 26 December 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 701  
Permanent link to this record
 

 
Author Ploton, P.; Barbier, N.; Couteron, P.; Antin, C.M.; Ayyappan, N.; Balachandran, N.; Barathan, N.; Bastin, J.-F.; Chuyong, G.; Dauby, G.; Droissart, V.; Gastellu-Etchegorry, J.-P.; Kamdem, N.G.; Kenfack, D.; Libalah, M.; Mofack, G., II; Momo, S.T.; Pargal, S.; Petronelli, P.; Proisy, C.; Réjou-Méchain, M.; Sonké, B.; Texier, N.; Thomas, D.; Verley, P.; Zebaze Dongmo, D.; Berger, U.; Pélissier, R. url  doi
openurl 
  Title Toward a general tropical forest biomass prediction model from very high resolution optical satellite images Type Journal Article
  Year 2017 Publication Remote Sensing of Environment Abbreviated Journal  
  Volume 200 Issue Pages 140-153  
  Keywords Canopy structure; Forest carbon; Fourier transform; Lacunarity; Passive optical imagery; Redd; Texture; Tropical forests  
  Abstract Very high spatial resolution (VHSR) optical satellite imagery has shown good potential to provide non-saturating proxies of tropical forest aboveground biomass (AGB) from the analysis of canopy texture, for instance through the Fourier Transform Textural Ordination method. Empirical case studies however showed that the relationship between Fourier texture features and forest AGB varies across forest types and regions of the world, limiting model transferability. A better understanding of the biophysical mechanisms on which canopy texture – forest AGB relation relies is a prerequisite to move toward broad scale applications. Here we simulated VHSR optical canopy scenes in identical sun-sensor geometry for 279 1-ha tropical forest inventory plots distributed across the tropics. Our aim was to assess the respective merits and complementarity of two types of texture analysis techniques (i.e. Fourier and lacunarity) on a set of forests with contrasted structure and geographical origin, and develop a general texture-based approach for tropical forest AGB mapping. Across forests, Fourier texture captured a gradient of stands mean crown size reflecting well the progressive changes in stand structure throughout forest aggradation phase (e.g. Pearson's r = − 0.42 with basal area) while lacunarity texture captured a gradient of canopy openness (, i.e. Pearson's r = − 0.57 with stand gap fraction). Both types of texture indices were highly complementary for predicting forest AGB at the global level (so-called FL-model). The residual error of the FL-model was structured across sites and could be partially captured with a bioclimatic proxy, further improving the performance of the global model (so-called FLE-model) and reducing site-level biases. The FLE model was tested on a set of real Pleiades images covering a mosaic of high-biomass forests in the Congo basin (mean AGB over 49 field plots: 359 ± 98 Mg ha− 1), leading to a significant relationship (R2 = 0.47 on validation data) with reasonable error levels (< 25% rRMSE). The increasing availability of VHSR optical sensors (such as from constellations of small satellite platforms) raises the possibility of routine repeated imaging of the world's tropical forests and suggests that texture-based analyses could become an essential tool in international efforts to monitor carbon emissions from deforestation and forest degradations (REDD +). © 2017 Elsevier Inc.  
  Address Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 September 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 766  
Permanent link to this record
 

 
Author Guitet, S.; Herault, B.; Molto, Q.; Brunaux, O.; Couteron, P. pdf  url
openurl 
  Title Spatial structure of above-ground biomass limits accuracy of carbon mapping in rainforest but large scale forest inventories can help to overcome Type Journal Article
  Year 2015 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 10 Issue 9 Pages e0138456  
  Keywords  
  Abstract Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions.We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions.We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. Copyright: © 2015 Guitet et al.  
  Address Institut de Recherche Pour le Développement (IRD), UMR Amap, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 November 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 639  
Permanent link to this record
 

 
Author Talaga, S.; Murienne, J.; Dejean, A.; Leroy, C. pdf  url
openurl 
  Title Online database for mosquito (Diptera, Culicidae) occurrence records in French guiana Type Journal Article
  Year 2015 Publication ZooKeys Abbreviated Journal ZooKeys  
  Volume 2015 Issue 532 Pages 107-115  
  Keywords Diversity; French guiana; Mosquitoes; Neotropics; Occurrence  
  Abstract A database providing information on mosquito specimens (Arthropoda: Diptera: Culicidae) collected in French Guiana is presented. Field collections were initiated in 2013 under the auspices of the CEnter for the study of Biodiversity in Amazonia (CEBA: http://www.labexceba.fr/en/). This study is part of an ongoing process aiming to understand the distribution of mosquitoes, including vector species, across French Guiana. Occurrences are recorded after each collecting trip in a database managed by the laboratory Evolution et Diversité Biologique (EDB), Toulouse, France. The dataset is updated monthly and is available online. Voucher specimens and their associated DNA are stored at the laboratory Ecologie des Forêts de Guyane (Ecofog), Kourou, French Guiana. The latest version of the dataset is accessible through EDB’s Integrated Publication Toolkit at http://130.120.204.55:8080/ipt/resource.do?r=mosquitoesof french_guiana or through the Global Biodiversity Information Facility data portal at http://www.gbif.org/ dataset/5a8aa2ad-261c-4f61-a98e-26dd752fe1c5 It can also be viewed through the Guyanensis platform at http://guyanensis.ups-tlse.fr © Stanislas Talaga et al.  
  Address IRD, Laboratoire de botAnique et Modélisation de l’Architecture des Plantes et des végétations (AMAP; UMR 123), Boulevard de la Lironde, TA A-51/PS2, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 November 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 640  
Permanent link to this record
 

 
Author Vedel, V.; Rheims, C.; Murienne, J.; Brescovit, A.D. pdf  url
openurl 
  Title Biodiversity baseline of the French Guiana spider fauna Type Journal Article
  Year 2013 Publication SpringerPlus Abbreviated Journal SpringerPlus  
  Volume 2 Issue 1 Pages 1-19  
  Keywords Arachnids; Araneae; Bio monitoring; French Guiana; Neotropics; Species richness  
  Abstract The need for an updated list of spiders found in French Guiana rose recently due to many upcoming studies planned. In this paper, we list spiders from French Guiana from existing literature (with corrected nomenclature when necessary) and from 2142 spiders sampled in 12 sites for this baseline study. Three hundred and sixty four validated species names of spider were found in the literature and previous authors' works. Additional sampling, conducted for this study added another 89 identified species and 62 other species with only a genus name for now. The total species of spiders sampled in French Guiana is currently 515. Many other Morphospecies were found but not described as species yet. An accumulation curve was drawn with seven of the sampling sites and shows no plateau yet. Therefore, the number of species inhabiting French Guiana cannot yet be determined. As the very large number of singletons found in the collected materials suggests, the accumulation curve indicates nevertheless that more sampling is necessary to discover the many unknown spider species living in French Guiana, with a focus on specific periods (dry season and wet season) and on specific and poorly studied habitats such as canopy, inselberg and cambrouze (local bamboo monospecific forest). © 2013 Vedel et al.  
  Address CNRS, EFA, UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique), Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21931801 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 November 2013; Source: Scopus; doi: 10.1186/2193-1801-2-361; Language of Original Document: English; Correspondence Address: Vedel, V.; Laboratoire d'entomologie Entobios, 5 Bis rue François Thomas, 97310 Kourou, Guyane Française, France; email: vincent.vedel@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 510  
Permanent link to this record
 

 
Author Roussel, J.-R.; Clair, B. url  openurl
  Title Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress Type Journal Article
  Year 2015 Publication Tree Physiology Abbreviated Journal Tree Physiology  
  Volume 35 Issue 12 Pages 1366-1377  
  Keywords maturation stress generation; ontogeny; Simarouba amara Aubl.; tension wood cell wall; tree biomechanics  
  Abstract To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees – a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells. © 2015 The Author 2015. Published by Oxford University Press. All rights reserved.  
  Address CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 701, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 672  
Permanent link to this record
 

 
Author Öpik, M.; Zobel, M.; Cantero, J.J.; Davison, J.; Facelli, J.M.; Hiiesalu, I.; Jairus, T.; Kalwij, J.M.; Koorem, K.; Leal, M.E.; Liira, J.; Metsis, M.; Neshataeva, V.; Paal, J.; Phosri, C.; Põlme, S.; Reier, Ü.; Saks, Ü.; Schimann, H.; Thiéry, O.; Vasar, M.; Moora, M. url  openurl
  Title Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi Type Journal Article
  Year 2013 Publication Mycorrhiza Abbreviated Journal  
  Volume 23 Issue 5 Pages 411-430  
  Keywords 454-sequencing; Biogeography; Database; Diversity; Fungal macroecology; Glomeromycota  
  Abstract We aimed to enhance understanding of the molecular diversity of arbuscular mycorrhizal fungi (AMF) by building a new global dataset targeting previously unstudied geographical areas. In total, we sampled 96 plant species from 25 sites that encompassed all continents except Antarctica. AMF in plant roots were detected by sequencing the nuclear SSU rRNA gene fragment using either cloning followed by Sanger sequencing or 454-sequencing. A total of 204 AMF phylogroups (virtual taxa, VT) were recorded, increasing the described number of Glomeromycota VT from 308 to 341 globally. Novel VT were detected from 21 sites; three novel but nevertheless widespread VT (Glomus spp. MO-G52, MO-G53, MO-G57) were recorded from six continents. The largest increases in regional VT number were recorded in previously little-studied Oceania and in the boreal and polar climatic zones – this study providing the first molecular data from the latter. Ordination revealed differences in AM fungal communities between different continents and climatic zones, suggesting that both biogeographic history and environmental conditions underlie the global variation of those communities. Our results show that a considerable proportion of Glomeromycota diversity has been recorded in many regions, though further large increases in richness can be expected in remaining unstudied areas. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address INRA-Joint Research Unit Ecology of Guiana Forests (Ecofog), campus agronomique, BP 709, 97387 Kourou cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 June 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 493  
Permanent link to this record
 

 
Author Christensen-Dalsgaard, K.K.; Ennos, A.R.; Fournier, M. url  openurl
  Title Interrelations between hydraulic and mechanical stress adaptations in woody plants Type Journal Article
  Year 2008 Publication Plant Signaling and Behavior Abbreviated Journal Plant. Signal. Behav.  
  Volume 3 Issue 7 Pages 463-465  
  Keywords Conductivity; Modulus of elasticity; Strain; Tree ecophysiology; Tropical trees; Wood anatomy; Yield stress  
  Abstract The fields of plant water relations and plant biomechanics have traditionally been studied separately even though often the same tissues are responsible for water transport and mechanical support. There is now increasing evidence that hydraulic and mechanical adaptations may influence one another. We studied the changes in the hydraulic and mechanical properties of the wood along lateral roots of two species of buttressed trees. In these roots, the mechanical contstraints quantified by strain measurements are known to decrease distally. Further, we investigated the effect of mechanical loading on the vessel anatomy in these and four other species of tropical trees. We found that as the strain decreased, the wood became progressively less stiff and strong but the conductivity increased exponentially. This was reflected in that adaptations towards re-enforcing mechanically loaded areas resulted in xylem with fewer and smaller vessels. In addition a controlled growth experiment on three tree species showed that drought adaptation may results in plants with stronger and stiffer tissue. Our results indicate that hydraulic and mechanical stress adaptations may be interrelated, and so support recent studied suggesting that physiological responses are complex balances rather than pure optimisations. ©2008 Landes Bioscience.  
  Address University of Alberta, Department of Renewable Resources, 4-44 Earth Science Bldg., Edmonton, AB T6G 2E3, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 15592316 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 January 2012; Source: Scopus; Language of Original Document: English; Correspondence Address: Christensen-Dalsgaard, K. K.; University of Alberta, Department of Renewable Resources, 4-44 Earth Science Bldg., Edmonton, AB T6G 2E3, Canada; email: kkchrist@ualberta.ca Approved no  
  Call Number EcoFoG @ webmaster @ Serial 380  
Permanent link to this record
 

 
Author Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. pdf  url
doi  openurl
  Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 11 Issue 3 Pages 367  
  Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry  
  Abstract Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email: florent.taureau@univ-nantes.fr; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no  
  Call Number EcoFoG @ webmaster @ Serial 861  
Permanent link to this record
 

 
Author Courtois, E. A.; Stahl, C.; Burban, B.; Van Den Berge, J.; Berveiller, D.; Bréchet, L.; Larned Soong, J.; Arriga, N.; Peñuelas, J.; August Janssens, I. pdf  url
doi  openurl
  Title Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest Type Journal Article
  Year 2019 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 16 Issue 3 Pages 785-796  
  Keywords  
  Abstract Measuring in situ soil fluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO 2 flux chamber system (LI-8100A) with a CH 4 and N 2 O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure time of 2 min was sufficient for a reliable estimation of CO 2 and CH 4 fluxes (100% and 98.5% of fluxes were above minimum detectable flux – MDF, respectively). This closure time was generally not suitable for a reliable estimation of the low N 2 O fluxes in this ecosystem but was sufficient for detecting rare major peak events. A closure time of 25 min was more appropriate for reliable estimation of most N 2 O fluxes (85.6% of measured fluxes are above MDF±0.002 nmolm -2 s -1 ). Our study highlights the importance of adjusted closure time for each gas. © Author(s) 2019.  
  Address CREAF, Cerdanyola Del Vallès, Catalonia, 08193, Spain  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17264170 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (down) Export Date: 25 February 2019; Correspondence Address: Alice Courtois, E.; Department of Biology University of Antwerp, Centers of Excellence Global Change Ecology and PLECO (Plants and Ecosystems), Universiteitsplein 1, Belgium; email: courtoiselodie@gmail.com; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD; Funding details: European Research Council, ERC, ERC-2013-SyG 610028-IMBALANCE-P; Funding details: ANR-10-LABX-25-01, ANR-11-INBS-0001; Funding details: U.S. Department of Energy, DOE, DE-AC02-05CH11231; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Institut National de la Recherche Agronomique, INRA; Funding details: Fonds Wetenschappelijk Onderzoek, FWO; Funding text 1: Acknowledgements. This research was supported by the European Research Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P. We thank Jan Segers for help in the initial setting of the system and Renato Winkler from Picarro and Rod Madsen and Jason Hupp from LI-COR for their help in combining the systems. We thank the staff of Paracou station, managed by UMR Ecofog (CIRAD, INRA; Kourou), which received support from “Investissement d’Avenir” grants managed by Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01, ANAEE-France: ANR-11-INBS-0001). This study was conducted in collaboration with the Guyaflux program belonging to SOERE F-ORE-T, which is supported annually by Ecofor, Allenvi, and the French national research infrastructure, ANAEE-F. This program also received support from an “investissement d’avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Ivan August Janssens acknowledges support from Antwerp University (Methusalem funding), Nicola Arriga from ICOS-Belgium and Fonds Wetenschappelijk Onderzoek (FWO), and Jennifer Larned Soong from the U.S. Department of Energy under contract DE-AC02-05CH11231.; References: Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-Term variations in carbon flux and balance in a tropical rainforest in French Guiana? (2018) Agr. Forest Meteorol, 253, pp. 114-123; Ambus, P., Skiba, U., Drewer, J., Jones, S., Carter, M.S., Albert, K.R., Sutton, M., Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes (2010) Eur. J. Soil Sci, 61, pp. 785-792; Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino, M.C., Butterbach-Bahl, K., Verchot, L., Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya (2017) J. Geophys. Res.-Biogeo, 122, pp. 514-527; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Change Biol, 14, pp. 1917-1933; Bréchet, L., Ponton, S., Roy, J., Freycon, V., Coteaux, M.-M., Bonal, D., Epron, D., Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots (2009) Plant Soil, 319, pp. 235-246; Breuer, L., Papen, H., Butterbach-Bahl, K., N2O emission from tropical forest soils of Australia (2000) J. Geophys. Res.-Atmos, 105, pp. 26353-26367; Christiansen, J.R., Outhwaite, J., Smukler, S.M., Comparison of CO2, CH4 and N2O soil-Atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography (2015) Agr. Forest Meteorol, 211, pp. 48-57; Courtois, E.A., Stahl, C., Dataset from Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest (2019) Biogeosciences, 2019. , https://doi.org/10.5281/zenodo.2555299; Courtois, E.A., Stahl, C., Van Den Berge, J., Bréchet, L., Van Langenhove, L., Richter, A., Urbina, I., Janssens, I.A., Spatial variation of soil CO2, CH4 and N2O fluxes across topographical positions in tropical forests of the Guiana Shield (2018) Ecosystems, 21, pp. 1445-1458; Davidson, E., Savage, K., Verchot, L., Navarro, R., Minimizing artifacts and biases in chamber-based measurements of soil respiration (2002) Agr. Forest Meteorol, 113, pp. 21-37; Davidson, E.A., Nepstad, D.C., Ishida, F.Y., Brando, P.M., Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest (2008) Glob. Change Biol, 14, pp. 2582-2590; De Klein, C., Harvey, M., (2012) Nitrous Oxide Chamber Methodology Guidelines, , Ministry for Primary Industries, Wellington, New Zealand; Denmead, O., Chamber systems for measuring nitrous oxide emission from soils in the field (1979) Soil Sci. Soc. Am. J, 43, pp. 89-95; Dutaur, L., Verchot, L.V., A global inventory of the soil CH4 sink (2007) Glob. Biogeochem. Cy, p. 21. , https://doi.org/10.1029/2006GB002734; Epron, D., Bosc, A., Bonal, D., Freycon, V., Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana (2006) J. Trop. Ecol, 22, pp. 565-574; (1998) World Reference Base for Soil Resources, , FAO/ ISRIC/ISSS.FAO, ISRIC, ISSS, World Soil Resources Reports 84, Rome; Görres, C.-M., Kammann, C., Ceulemans, R., Automation of soil flux chamber measurements, potentials and pitfalls (2016) Biogeosciences, 13, pp. 1949-1966. , https://doi.org/10.5194/bg-13-1949-2016; Hupp, J.R., Garcia, R.L., Madsen, R., McDermitt, D.K., Measurement of CO2 evolution in a multiplexed flask system (2009) Amer. Soc. Horticultural Science, Alexandria USA, 44, pp. 1143-1143; Janssens, I.A., Kowalski, A.S., Longdoz, B., Ceulemans, R., Assessing forest soil CO2 efflux, an in-situ comparison of four techniques (2000) Tree Physiol, 20, pp. 23-32; Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., Lohila, A., Measurements of CO2 exchange with an automated chamber system throughout the year, challenges in measuring night-Time respiration on porous peat soil (2014) Biogeosciences, 11, pp. 347-363. , https://doi.org/10.5194/bg-11-347-2014; Kostyanovsky, K., Huggins, D., Stockle, C., Waldo, S., Lamb, B., Developing a flow through chamber system for automated measurements of soil N2O and CO2 emissions (2018) Measurement, 113, pp. 172-180; Merbold, L., Wohlfahrt, G., Butterbach-Bahl, K., Pilegaard, K., DelSontro, T., Stoy, P., Zona, D., Preface, Towards a full greenhouse gas balance of the biosphere (2015) Biogeosciences, 12, pp. 453-456. , https://doi.org/10.5194/bg-12-453-2015; Nickerson, N., (2016) Evaluating Gas Emission Measurements Using Minimum Detectable Flux (MDF), , Eosense Inc., Dartmouth, Nova Scotia, Canada; Nicolini, G., Castaldi, S., Fratini, G., Valentini, R., A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems (2013) Atmos. Environ, 81, pp. 311-319; O'Connell, C.S., Ruan, L., Silver, W.L., Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions (2018) Nat. Commun, 9, p. 1348. , https://doi.org/10.1038/s41467-018-03352; Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., Greenhouse gas emissions from soils-A review (2016) Chem. Erde-Geochem, 76, pp. 327-352; Petitjean, C., Hénault, C., Perrin, A.-S., Pontet, C., Metay, A., Bernoux, M., Jehanno, T., Roggy, J.-C., Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-And-mulch method (2015) Agr. Ecosyst. Environ, 208, pp. 64-74; Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., Vargas, R., Influence of experimental extreme water pulses on greenhouse gas emissions from soils (2017) Biogeochemistry, 133, pp. 147-164; Petrakis, S., Barba, J., Bond-Lamberty, B., Vargas, R., Using greenhouse gas fluxes to define soil functional types (2017) Plant Soil, pp. 1-10; Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Pihlatie, M., Comparison of different chamber techniques for measuring soil CO2 efflux (2004) Agr. Forest Meteorol, 123, pp. 159-176; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2014) Glob. Change Biol, 20, pp. 979-991; Rubio, V.E., Detto, M., Spatiotemporal variability of soil respiration in a seasonal tropical forest (2017) Ecol. Evol, 7, pp. 7104-7116; Savage, K., Phillips, R., Davidson, E., High temporal frequency measurements of greenhouse gas emissions from soils (2014) Biogeosciences, 11, pp. 2709-2720. , https://doi.org/10.5194/bg-11-2709-2014; Silver, W.L., Lugo, A., Keller, M., Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils (1999) Biogeochemistry, 44, pp. 301-328; Teh, Y.A., Diem, T., Jones, S., Huaraca Quispe, L.P., Baggs, E., Morley, N., Richards, M., Meir, P., Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes (2014) Biogeosciences, 11, pp. 2325-2339. , https://doi.org/10.5194/bg-11-2325-2014; Verchot, L.V., Davidson, E.A., Cattânio, H., Ackerman, I.L., Erickson, H.E., Keller, M., Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia (1999) Global Biogeochem. Cy, 13, pp. 31-46; Verchot, L.V., Davidson, E.A., Cattânio, J.H., Ackerman, I.L., Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia (2000) Ecosystems, 3, pp. 41-56; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agr. Forest Meteorol, 151, pp. 1202-1213 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 860  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: